MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0enwwlksnge1 Structured version   Visualization version   Unicode version

Theorem 0enwwlksnge1 26749
Description: In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Assertion
Ref Expression
0enwwlksnge1  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  ( N WWalksN  G )  =  (/) )

Proof of Theorem 0enwwlksnge1
Dummy variables  i  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 wwlksn 26729 . . . 4  |-  ( N  e.  NN0  ->  ( N WWalksN  G )  =  {
w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) } )
31, 2syl 17 . . 3  |-  ( N  e.  NN  ->  ( N WWalksN  G )  =  {
w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) } )
43adantl 482 . 2  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  ( N WWalksN  G )  =  {
w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) } )
5 eqid 2622 . . . . . . . 8  |-  (Vtx `  G )  =  (Vtx
`  G )
6 eqid 2622 . . . . . . . 8  |-  (Edg `  G )  =  (Edg
`  G )
75, 6iswwlks 26728 . . . . . . 7  |-  ( w  e.  (WWalks `  G
)  <->  ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
8 nncn 11028 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  CC )
9 pncan1 10454 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
108, 9syl 17 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
11 id 22 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  NN )
1210, 11eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  e.  NN )
1312adantl 482 . . . . . . . . . . . . . 14  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  (
( N  +  1 )  -  1 )  e.  NN )
1413adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( ( N  + 
1 )  -  1 )  e.  NN )
15 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  (
( # `  w )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
1615eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  (
( ( # `  w
)  -  1 )  e.  NN  <->  ( ( N  +  1 )  -  1 )  e.  NN ) )
1716adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( ( ( # `  w )  -  1 )  e.  NN  <->  ( ( N  +  1 )  -  1 )  e.  NN ) )
1814, 17mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( ( # `  w
)  -  1 )  e.  NN )
19 lbfzo0 12507 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ ( ( # `  w
)  -  1 ) )  <->  ( ( # `  w )  -  1 )  e.  NN )
2018, 19sylibr 224 . . . . . . . . . . 11  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
0  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) )
21 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( i  =  0  ->  (
w `  i )  =  ( w ` 
0 ) )
22 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( i  =  0  ->  (
i  +  1 )  =  ( 0  +  1 ) )
23 0p1e1 11132 . . . . . . . . . . . . . . . 16  |-  ( 0  +  1 )  =  1
2422, 23syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( i  =  0  ->  (
i  +  1 )  =  1 )
2524fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( i  =  0  ->  (
w `  ( i  +  1 ) )  =  ( w ` 
1 ) )
2621, 25preq12d 4276 . . . . . . . . . . . . 13  |-  ( i  =  0  ->  { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  =  { ( w ` 
0 ) ,  ( w `  1 ) } )
2726eleq1d 2686 . . . . . . . . . . . 12  |-  ( i  =  0  ->  ( { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
2827adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  /\  i  =  0 )  ->  ( { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
2920, 28rspcdv 3312 . . . . . . . . . 10  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
30 eleq2 2690 . . . . . . . . . . . . 13  |-  ( (Edg
`  G )  =  (/)  ->  ( { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (/) ) )
31 noel 3919 . . . . . . . . . . . . . 14  |-  -.  {
( w `  0
) ,  ( w `
 1 ) }  e.  (/)
3231pm2.21i 116 . . . . . . . . . . . . 13  |-  ( { ( w `  0
) ,  ( w `
 1 ) }  e.  (/)  ->  -.  ( # `
 w )  =  ( N  +  1 ) )
3330, 32syl6bi 243 . . . . . . . . . . . 12  |-  ( (Edg
`  G )  =  (/)  ->  ( { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
3433adantr 481 . . . . . . . . . . 11  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G )  ->  -.  ( # `  w )  =  ( N  + 
1 ) ) )
3534adantl 482 . . . . . . . . . 10  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
3629, 35syldc 48 . . . . . . . . 9  |-  ( A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G )  -> 
( ( ( # `  w )  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  ->  -.  ( # `
 w )  =  ( N  +  1 ) ) )
37363ad2ant3 1084 . . . . . . . 8  |-  ( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  ->  ( ( (
# `  w )  =  ( N  + 
1 )  /\  (
(Edg `  G )  =  (/)  /\  N  e.  NN ) )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
3837com12 32 . . . . . . 7  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
397, 38syl5bi 232 . . . . . 6  |-  ( ( ( # `  w
)  =  ( N  +  1 )  /\  ( (Edg `  G )  =  (/)  /\  N  e.  NN ) )  -> 
( w  e.  (WWalks `  G )  ->  -.  ( # `  w )  =  ( N  + 
1 ) ) )
4039expimpd 629 . . . . 5  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  (
( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  /\  w  e.  (WWalks `  G ) )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
41 ax-1 6 . . . . 5  |-  ( -.  ( # `  w
)  =  ( N  +  1 )  -> 
( ( ( (Edg
`  G )  =  (/)  /\  N  e.  NN )  /\  w  e.  (WWalks `  G ) )  ->  -.  ( # `  w
)  =  ( N  +  1 ) ) )
4240, 41pm2.61i 176 . . . 4  |-  ( ( ( (Edg `  G
)  =  (/)  /\  N  e.  NN )  /\  w  e.  (WWalks `  G )
)  ->  -.  ( # `
 w )  =  ( N  +  1 ) )
4342ralrimiva 2966 . . 3  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  A. w  e.  (WWalks `  G )  -.  ( # `  w
)  =  ( N  +  1 ) )
44 rabeq0 3957 . . 3  |-  ( { w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) }  =  (/)  <->  A. w  e.  (WWalks `  G )  -.  ( # `
 w )  =  ( N  +  1 ) )
4543, 44sylibr 224 . 2  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  { w  e.  (WWalks `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  =  (/) )
464, 45eqtrd 2656 1  |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  ( N WWalksN  G )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   (/)c0 3915   {cpr 4179   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  Edgcedg 25939  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgr0edg  26868
  Copyright terms: Public domain W3C validator