MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stf1 Structured version   Visualization version   Unicode version

Theorem 1stf1 16832
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t  |-  T  =  ( C  X.c  D )
1stfval.b  |-  B  =  ( Base `  T
)
1stfval.h  |-  H  =  ( Hom  `  T
)
1stfval.c  |-  ( ph  ->  C  e.  Cat )
1stfval.d  |-  ( ph  ->  D  e.  Cat )
1stfval.p  |-  P  =  ( C  1stF  D )
1stf1.p  |-  ( ph  ->  R  e.  B )
Assertion
Ref Expression
1stf1  |-  ( ph  ->  ( ( 1st `  P
) `  R )  =  ( 1st `  R
) )

Proof of Theorem 1stf1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.t . . . . 5  |-  T  =  ( C  X.c  D )
2 1stfval.b . . . . 5  |-  B  =  ( Base `  T
)
3 1stfval.h . . . . 5  |-  H  =  ( Hom  `  T
)
4 1stfval.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
5 1stfval.d . . . . 5  |-  ( ph  ->  D  e.  Cat )
6 1stfval.p . . . . 5  |-  P  =  ( C  1stF  D )
71, 2, 3, 4, 5, 61stfval 16831 . . . 4  |-  ( ph  ->  P  =  <. ( 1st  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 1st  |`  (
x H y ) ) ) >. )
8 fo1st 7188 . . . . . . 7  |-  1st : _V -onto-> _V
9 fofun 6116 . . . . . . 7  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
108, 9ax-mp 5 . . . . . 6  |-  Fun  1st
11 fvex 6201 . . . . . . 7  |-  ( Base `  T )  e.  _V
122, 11eqeltri 2697 . . . . . 6  |-  B  e. 
_V
13 resfunexg 6479 . . . . . 6  |-  ( ( Fun  1st  /\  B  e. 
_V )  ->  ( 1st  |`  B )  e. 
_V )
1410, 12, 13mp2an 708 . . . . 5  |-  ( 1st  |`  B )  e.  _V
1512, 12mpt2ex 7247 . . . . 5  |-  ( x  e.  B ,  y  e.  B  |->  ( 1st  |`  ( x H y ) ) )  e. 
_V
1614, 15op1std 7178 . . . 4  |-  ( P  =  <. ( 1st  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 1st  |`  (
x H y ) ) ) >.  ->  ( 1st `  P )  =  ( 1st  |`  B ) )
177, 16syl 17 . . 3  |-  ( ph  ->  ( 1st `  P
)  =  ( 1st  |`  B ) )
1817fveq1d 6193 . 2  |-  ( ph  ->  ( ( 1st `  P
) `  R )  =  ( ( 1st  |`  B ) `  R
) )
19 1stf1.p . . 3  |-  ( ph  ->  R  e.  B )
20 fvres 6207 . . 3  |-  ( R  e.  B  ->  (
( 1st  |`  B ) `
 R )  =  ( 1st `  R
) )
2119, 20syl 17 . 2  |-  ( ph  ->  ( ( 1st  |`  B ) `
 R )  =  ( 1st `  R
) )
2218, 21eqtrd 2656 1  |-  ( ph  ->  ( ( 1st `  P
) `  R )  =  ( 1st `  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |` cres 5116   Fun wfun 5882   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   Basecbs 15857   Hom chom 15952   Catccat 16325    X.c cxpc 16808    1stF c1stf 16809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-xpc 16812  df-1stf 16813
This theorem is referenced by:  prf1st  16844  1st2ndprf  16846  uncf1  16876  uncf2  16877  diag11  16883  yonedalem21  16913  yonedalem22  16918
  Copyright terms: Public domain W3C validator