MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthnloop Structured version   Visualization version   Unicode version

Theorem 2pthnloop 26627
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 27011. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
2pthnloop  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
) )  ->  A. i  e.  ( 0..^ ( # `  F ) ) 2  <_  ( # `  (
I `  ( F `  i ) ) ) )
Distinct variable groups:    i, F    i, G    i, I    P, i

Proof of Theorem 2pthnloop
StepHypRef Expression
1 pthiswlk 26623 . . . . 5  |-  ( F (Paths `  G ) P  ->  F (Walks `  G ) P )
2 wlkv 26508 . . . . 5  |-  ( F (Walks `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
31, 2syl 17 . . . 4  |-  ( F (Paths `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
4 ispth 26619 . . . . . . 7  |-  ( F (Paths `  G ) P 
<->  ( F (Trails `  G ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
54a1i 11 . . . . . 6  |-  ( G  e.  _V  ->  ( F (Paths `  G ) P 
<->  ( F (Trails `  G ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
6 istrl 26593 . . . . . . . . . . . 12  |-  ( F (Trails `  G ) P 
<->  ( F (Walks `  G ) P  /\  Fun  `' F ) )
7 eqid 2622 . . . . . . . . . . . . . 14  |-  (Vtx `  G )  =  (Vtx
`  G )
8 2pthnloop.i . . . . . . . . . . . . . 14  |-  I  =  (iEdg `  G )
97, 8iswlkg 26509 . . . . . . . . . . . . 13  |-  ( G  e.  _V  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) ) ) )
109anbi1d 741 . . . . . . . . . . . 12  |-  ( G  e.  _V  ->  (
( F (Walks `  G ) P  /\  Fun  `' F )  <->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  /\  Fun  `' F ) ) )
116, 10syl5bb 272 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  ( F (Trails `  G ) P 
<->  ( ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  /\  Fun  `' F ) ) )
12 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
)  /\  i  e.  ( 0..^ ( # `  F
) ) )  -> 
( P `  i
)  =/=  ( P `
 ( i  +  1 ) ) )
1312ad5ant245 1307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  F (Paths `  G ) P )  /\  (
( Fun  `' F  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( P `  i )  =/=  ( P `  ( i  +  1 ) ) )
1413neneqd 2799 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  F (Paths `  G ) P )  /\  (
( Fun  `' F  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  -.  ( P `  i )  =  ( P `  ( i  +  1 ) ) )
15 ifpfal 1024 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
(if- ( ( P `
 i )  =  ( P `  (
i  +  1 ) ) ,  ( I `
 ( F `  i ) )  =  { ( P `  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i
) ) )  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) ) )
1615adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )  /\  F (Paths `  G ) P )  /\  ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  /\  -.  ( P `
 i )  =  ( P `  (
i  +  1 ) ) )  ->  (if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) )  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) ) )
17 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
( P `  i
)  e.  _V )
18 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
( P `  (
i  +  1 ) )  e.  _V )
19 neqne 2802 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
( P `  i
)  =/=  ( P `
 ( i  +  1 ) ) )
20 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
( I `  ( F `  i )
)  e.  _V )
21 prsshashgt1 13198 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P `  i )  e.  _V  /\  ( P `  (
i  +  1 ) )  e.  _V  /\  ( P `  i )  =/=  ( P `  ( i  +  1 ) ) )  /\  ( I `  ( F `  i )
)  e.  _V )  ->  ( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) )  -> 
2  <_  ( # `  (
I `  ( F `  i ) ) ) ) )
2217, 18, 19, 20, 21syl31anc 1329 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  ( P `  i
)  =  ( P `
 ( i  +  1 ) )  -> 
( { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) )  -> 
2  <_  ( # `  (
I `  ( F `  i ) ) ) ) )
2322adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )  /\  F (Paths `  G ) P )  /\  ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  /\  -.  ( P `
 i )  =  ( P `  (
i  +  1 ) ) )  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i
) )  ->  2  <_  ( # `  (
I `  ( F `  i ) ) ) ) )
2416, 23sylbid 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )  /\  F (Paths `  G ) P )  /\  ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  /\  -.  ( P `
 i )  =  ( P `  (
i  +  1 ) ) )  ->  (if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) )  ->  2  <_  ( # `  (
I `  ( F `  i ) ) ) ) )
2514, 24mpdan 702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  F (Paths `  G ) P )  /\  (
( Fun  `' F  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  (if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) )  ->  2  <_  ( # `
 ( I `  ( F `  i ) ) ) ) )
2625ralimdva 2962 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  F (Paths `  G ) P )  /\  (
( Fun  `' F  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  /\  1  < 
( # `  F ) )  ->  ( A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) )
2726ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )
)  /\  F (Paths `  G ) P )  /\  ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  ->  ( 1  <  ( # `  F
)  ->  ( A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) )
2827com23 86 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )
)  /\  F (Paths `  G ) P )  /\  ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) ) )  ->  ( A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) )  ->  ( 1  < 
( # `  F )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) )
2928exp31 630 . . . . . . . . . . . . . . . 16  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( F (Paths `  G ) P  -> 
( ( ( Fun  `' F  /\  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )  ->  ( A. i  e.  ( 0..^ ( # `  F ) )if- ( ( P `  i
)  =  ( P `
 ( i  +  1 ) ) ,  ( I `  ( F `  i )
)  =  { ( P `  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) )  ->  (
1  <  ( # `  F
)  ->  A. i  e.  ( 0..^ ( # `  F ) ) 2  <_  ( # `  (
I `  ( F `  i ) ) ) ) ) ) ) )
3029com24 95 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( A. i  e.  ( 0..^ ( # `  F ) )if- ( ( P `  i
)  =  ( P `
 ( i  +  1 ) ) ,  ( I `  ( F `  i )
)  =  { ( P `  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i )
) )  ->  (
( ( Fun  `' F  /\  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) ) )  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) )
31303impia 1261 . . . . . . . . . . . . . 14  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  ->  ( (
( Fun  `' F  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) )
3231exp4c 636 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  ->  ( Fun  `' F  ->  ( (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/)  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) ) )
3332imp 445 . . . . . . . . . . . 12  |-  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  /\  Fun  `' F )  ->  (
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/)  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) )
3433a1i 11 . . . . . . . . . . 11  |-  ( G  e.  _V  ->  (
( ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. i  e.  ( 0..^ ( # `  F
) )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `
 i ) )  =  { ( P `
 i ) } ,  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  C_  (
I `  ( F `  i ) ) ) )  /\  Fun  `' F )  ->  (
( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/)  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) ) )
3511, 34sylbid 230 . . . . . . . . . 10  |-  ( G  e.  _V  ->  ( F (Trails `  G ) P  ->  ( ( ( P " { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) ) )
3635com24 95 . . . . . . . . 9  |-  ( G  e.  _V  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( F (Trails `  G ) P  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) ) )
3736com14 96 . . . . . . . 8  |-  ( F (Trails `  G ) P  ->  ( Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  -> 
( ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/)  ->  ( G  e.  _V  ->  ( F (Paths `  G ) P  ->  ( 1  < 
( # `  F )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) ) ) )
38373imp 1256 . . . . . . 7  |-  ( ( F (Trails `  G
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( G  e.  _V  ->  ( F (Paths `  G ) P  ->  ( 1  < 
( # `  F )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) )
3938com12 32 . . . . . 6  |-  ( G  e.  _V  ->  (
( F (Trails `  G ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  ( F (Paths `  G ) P  ->  ( 1  < 
( # `  F )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) )
405, 39sylbid 230 . . . . 5  |-  ( G  e.  _V  ->  ( F (Paths `  G ) P  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) )
41403ad2ant1 1082 . . . 4  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (Paths `  G ) P  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) ) )
423, 41mpcom 38 . . 3  |-  ( F (Paths `  G ) P  ->  ( F (Paths `  G ) P  -> 
( 1  <  ( # `
 F )  ->  A. i  e.  (
0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) ) )
4342pm2.43i 52 . 2  |-  ( F (Paths `  G ) P  ->  ( 1  < 
( # `  F )  ->  A. i  e.  ( 0..^ ( # `  F
) ) 2  <_ 
( # `  ( I `
 ( F `  i ) ) ) ) )
4443imp 445 1  |-  ( ( F (Paths `  G
) P  /\  1  <  ( # `  F
) )  ->  A. i  e.  ( 0..^ ( # `  F ) ) 2  <_  ( # `  (
I `  ( F `  i ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  Trailsctrls 26587  Pathscpths 26608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589  df-pths 26612
This theorem is referenced by:  upgr2pthnlp  26628
  Copyright terms: Public domain W3C validator