| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4fvwrd4 | Structured version Visualization version Unicode version | ||
| Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| Ref | Expression |
|---|---|
| 4fvwrd4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . 6
| |
| 2 | 0nn0 11307 |
. . . . . . . . 9
| |
| 3 | elnn0uz 11725 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mpbi 220 |
. . . . . . . 8
|
| 5 | 3nn0 11310 |
. . . . . . . . . . 11
| |
| 6 | elnn0uz 11725 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mpbi 220 |
. . . . . . . . . 10
|
| 8 | uzss 11708 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . 9
|
| 10 | 9 | sseli 3599 |
. . . . . . . 8
|
| 11 | eluzfz 12337 |
. . . . . . . 8
| |
| 12 | 4, 10, 11 | sylancr 695 |
. . . . . . 7
|
| 13 | 12 | adantr 481 |
. . . . . 6
|
| 14 | 1, 13 | ffvelrnd 6360 |
. . . . 5
|
| 15 | risset 3062 |
. . . . . 6
| |
| 16 | eqcom 2629 |
. . . . . . 7
| |
| 17 | 16 | rexbii 3041 |
. . . . . 6
|
| 18 | 15, 17 | bitri 264 |
. . . . 5
|
| 19 | 14, 18 | sylib 208 |
. . . 4
|
| 20 | 1eluzge0 11732 |
. . . . . . . 8
| |
| 21 | 1z 11407 |
. . . . . . . . . . 11
| |
| 22 | 3z 11410 |
. . . . . . . . . . 11
| |
| 23 | 1le3 11244 |
. . . . . . . . . . 11
| |
| 24 | eluz2 11693 |
. . . . . . . . . . 11
| |
| 25 | 21, 22, 23, 24 | mpbir3an 1244 |
. . . . . . . . . 10
|
| 26 | uzss 11708 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
|
| 28 | 27 | sseli 3599 |
. . . . . . . 8
|
| 29 | eluzfz 12337 |
. . . . . . . 8
| |
| 30 | 20, 28, 29 | sylancr 695 |
. . . . . . 7
|
| 31 | 30 | adantr 481 |
. . . . . 6
|
| 32 | 1, 31 | ffvelrnd 6360 |
. . . . 5
|
| 33 | risset 3062 |
. . . . . 6
| |
| 34 | eqcom 2629 |
. . . . . . 7
| |
| 35 | 34 | rexbii 3041 |
. . . . . 6
|
| 36 | 33, 35 | bitri 264 |
. . . . 5
|
| 37 | 32, 36 | sylib 208 |
. . . 4
|
| 38 | 19, 37 | jca 554 |
. . 3
|
| 39 | 2eluzge0 11733 |
. . . . . . 7
| |
| 40 | uzuzle23 11729 |
. . . . . . 7
| |
| 41 | eluzfz 12337 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 695 |
. . . . . 6
|
| 43 | 42 | adantr 481 |
. . . . 5
|
| 44 | 1, 43 | ffvelrnd 6360 |
. . . 4
|
| 45 | risset 3062 |
. . . . 5
| |
| 46 | eqcom 2629 |
. . . . . 6
| |
| 47 | 46 | rexbii 3041 |
. . . . 5
|
| 48 | 45, 47 | bitri 264 |
. . . 4
|
| 49 | 44, 48 | sylib 208 |
. . 3
|
| 50 | eluzfz 12337 |
. . . . . . 7
| |
| 51 | 7, 50 | mpan 706 |
. . . . . 6
|
| 52 | 51 | adantr 481 |
. . . . 5
|
| 53 | 1, 52 | ffvelrnd 6360 |
. . . 4
|
| 54 | risset 3062 |
. . . . 5
| |
| 55 | eqcom 2629 |
. . . . . 6
| |
| 56 | 55 | rexbii 3041 |
. . . . 5
|
| 57 | 54, 56 | bitri 264 |
. . . 4
|
| 58 | 53, 57 | sylib 208 |
. . 3
|
| 59 | 38, 49, 58 | jca32 558 |
. 2
|
| 60 | r19.42v 3092 |
. . . . . 6
| |
| 61 | r19.42v 3092 |
. . . . . . 7
| |
| 62 | 61 | anbi2i 730 |
. . . . . 6
|
| 63 | 60, 62 | bitri 264 |
. . . . 5
|
| 64 | 63 | rexbii 3041 |
. . . 4
|
| 65 | 64 | 2rexbii 3042 |
. . 3
|
| 66 | r19.42v 3092 |
. . . . 5
| |
| 67 | r19.41v 3089 |
. . . . . 6
| |
| 68 | 67 | anbi2i 730 |
. . . . 5
|
| 69 | 66, 68 | bitri 264 |
. . . 4
|
| 70 | 69 | 2rexbii 3042 |
. . 3
|
| 71 | r19.41v 3089 |
. . . . . 6
| |
| 72 | r19.42v 3092 |
. . . . . . 7
| |
| 73 | 72 | anbi1i 731 |
. . . . . 6
|
| 74 | 71, 73 | bitri 264 |
. . . . 5
|
| 75 | 74 | rexbii 3041 |
. . . 4
|
| 76 | r19.41v 3089 |
. . . 4
| |
| 77 | r19.41v 3089 |
. . . . 5
| |
| 78 | 77 | anbi1i 731 |
. . . 4
|
| 79 | 75, 76, 78 | 3bitri 286 |
. . 3
|
| 80 | 65, 70, 79 | 3bitri 286 |
. 2
|
| 81 | 59, 80 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |