![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version Unicode version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
subrgss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | issubrg 18780 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simprbi 480 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simpld 475 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-subrg 18778 |
This theorem is referenced by: subrgsubg 18786 subrg1 18790 subrgsubm 18793 subrgdvds 18794 subrguss 18795 subrginv 18796 subrgdv 18797 subrgmre 18804 issubdrg 18805 subsubrg 18806 abvres 18839 sralmod 19187 issubassa 19324 sraassa 19325 aspid 19330 issubassa2 19345 resspsrbas 19415 resspsradd 19416 resspsrmul 19417 resspsrvsca 19418 mplassa 19454 ressmplbas2 19455 subrgascl 19498 subrgasclcl 19499 mplind 19502 evlsval2 19520 evlssca 19522 evlsscasrng 19526 mpfconst 19530 mpff 19533 mpfaddcl 19534 mpfmulcl 19535 mpfind 19536 ply1assa 19569 evls1val 19685 evls1rhm 19687 evls1sca 19688 evls1scasrng 19703 pf1f 19714 cnsubrg 19806 sranlm 22488 clmsscn 22879 cphreccllem 22978 cphdivcl 22982 cphabscl 22985 cphsqrtcl2 22986 cphsqrtcl3 22987 cphipcl 22991 4cphipval2 23041 resscdrg 23154 srabn 23156 plypf1 23968 dvply2g 24040 taylply2 24122 cnsrexpcl 37735 fsumcnsrcl 37736 cnsrplycl 37737 rgspnid 37742 rngunsnply 37743 sdrgacs 37771 |
Copyright terms: Public domain | W3C validator |