MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabvd Structured version   Visualization version   Unicode version

Theorem isabvd 18820
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isabvd.a  |-  ( ph  ->  A  =  (AbsVal `  R ) )
isabvd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isabvd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isabvd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isabvd.z  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
isabvd.1  |-  ( ph  ->  R  e.  Ring )
isabvd.2  |-  ( ph  ->  F : B --> RR )
isabvd.3  |-  ( ph  ->  ( F `  .0.  )  =  0 )
isabvd.4  |-  ( (
ph  /\  x  e.  B  /\  x  =/=  .0.  )  ->  0  <  ( F `  x )
)
isabvd.5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
isabvd.6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .+  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
isabvd  |-  ( ph  ->  F  e.  A )
Distinct variable groups:    x, y, F    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    B( x, y)    .+ ( x, y)    .x. ( x, y)    .0. ( x, y)

Proof of Theorem isabvd
StepHypRef Expression
1 isabvd.2 . . . . . 6  |-  ( ph  ->  F : B --> RR )
2 isabvd.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  R ) )
32feq2d 6031 . . . . . 6  |-  ( ph  ->  ( F : B --> RR 
<->  F : ( Base `  R ) --> RR ) )
41, 3mpbid 222 . . . . 5  |-  ( ph  ->  F : ( Base `  R ) --> RR )
5 ffn 6045 . . . . 5  |-  ( F : ( Base `  R
) --> RR  ->  F  Fn  ( Base `  R
) )
64, 5syl 17 . . . 4  |-  ( ph  ->  F  Fn  ( Base `  R ) )
74ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  x )  e.  RR )
8 0le0 11110 . . . . . . . . . 10  |-  0  <_  0
9 isabvd.z . . . . . . . . . . . 12  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
109fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  .0.  )  =  ( F `  ( 0g `  R
) ) )
11 isabvd.3 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  .0.  )  =  0 )
1210, 11eqtr3d 2658 . . . . . . . . . 10  |-  ( ph  ->  ( F `  ( 0g `  R ) )  =  0 )
138, 12syl5breqr 4691 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( F `  ( 0g `  R
) ) )
1413adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  0  <_  ( F `  ( 0g
`  R ) ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  ( F `  ( 0g `  R ) ) )
1615breq2d 4665 . . . . . . . 8  |-  ( x  =  ( 0g `  R )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( 0g
`  R ) ) ) )
1714, 16syl5ibrcom 237 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =  ( 0g `  R )  ->  0  <_  ( F `  x
) ) )
18 simp1 1061 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ph )
19 simp2 1062 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  (
Base `  R )
)
2023ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  B  =  (
Base `  R )
)
2119, 20eleqtrrd 2704 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  B
)
22 simp3 1063 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  ( 0g `  R ) )
2393ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  .0.  =  ( 0g `  R ) )
2422, 23neeqtrrd 2868 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  .0.  )
25 isabvd.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B  /\  x  =/=  .0.  )  ->  0  <  ( F `  x )
)
2618, 21, 24, 25syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  0  <  ( F `  x )
)
27 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
2873adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( F `  x )  e.  RR )
29 ltle 10126 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
( 0  <  ( F `  x )  ->  0  <_  ( F `  x ) ) )
3027, 28, 29sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( 0  < 
( F `  x
)  ->  0  <_  ( F `  x ) ) )
3126, 30mpd 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  0  <_  ( F `  x )
)
32313expia 1267 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =/=  ( 0g `  R
)  ->  0  <_  ( F `  x ) ) )
3317, 32pm2.61dne 2880 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  0  <_  ( F `  x ) )
34 elrege0 12278 . . . . . 6  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
357, 33, 34sylanbrc 698 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  x )  e.  ( 0 [,) +oo )
)
3635ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  R )
( F `  x
)  e.  ( 0 [,) +oo ) )
37 ffnfv 6388 . . . 4  |-  ( F : ( Base `  R
) --> ( 0 [,) +oo )  <->  ( F  Fn  ( Base `  R )  /\  A. x  e.  (
Base `  R )
( F `  x
)  e.  ( 0 [,) +oo ) ) )
386, 36, 37sylanbrc 698 . . 3  |-  ( ph  ->  F : ( Base `  R ) --> ( 0 [,) +oo ) )
3926gt0ne0d 10592 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( F `  x )  =/=  0
)
40393expia 1267 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =/=  ( 0g `  R
)  ->  ( F `  x )  =/=  0
) )
4140necon4d 2818 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( ( F `  x )  =  0  ->  x  =  ( 0g `  R ) ) )
4212adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  ( 0g `  R
) )  =  0 )
4315eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( 0g `  R )  ->  (
( F `  x
)  =  0  <->  ( F `  ( 0g `  R ) )  =  0 ) )
4442, 43syl5ibrcom 237 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  0 ) )
4541, 44impbid 202 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( ( F `  x )  =  0  <->  x  =  ( 0g `  R ) ) )
46123ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( 0g `  R ) )  =  0 )
4746adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( 0g `  R
) )  =  0 )
48 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x ( .r `  R ) y )  =  ( ( 0g
`  R ) ( .r `  R ) y ) )
49 isabvd.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
50493ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  R  e.  Ring )
51 simp3 1063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  y  e.  (
Base `  R )
)
52 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  R )  =  (
Base `  R )
53 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 0g
`  R )  =  ( 0g `  R
)
5552, 53, 54ringlz 18587 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( .r `  R ) y )  =  ( 0g `  R ) )
5650, 51, 55syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( 0g
`  R ) ( .r `  R ) y )  =  ( 0g `  R ) )
5748, 56sylan9eqr 2678 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( x
( .r `  R
) y )  =  ( 0g `  R
) )
5857fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( F `  ( 0g
`  R ) ) )
5915, 46sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  x )  =  0 )
6059oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  ( 0  x.  ( F `
 y ) ) )
6143ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  F : (
Base `  R ) --> RR )
6261, 51ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  y )  e.  RR )
6362recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  y )  e.  CC )
6463adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  y )  e.  CC )
6564mul02d 10234 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( 0  x.  ( F `  y ) )  =  0 )
6660, 65eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  0 )
6747, 58, 663eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
6846adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( 0g `  R
) )  =  0 )
69 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  ( 0g `  R )  ->  (
x ( .r `  R ) y )  =  ( x ( .r `  R ) ( 0g `  R
) ) )
70 simp2 1062 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  x  e.  (
Base `  R )
)
7152, 53, 54ringrz 18588 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
7250, 70, 71syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( .r `  R ) ( 0g `  R
) )  =  ( 0g `  R ) )
7369, 72sylan9eqr 2678 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( x
( .r `  R
) y )  =  ( 0g `  R
) )
7473fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( F `  ( 0g
`  R ) ) )
75 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( 0g `  R )  ->  ( F `  y )  =  ( F `  ( 0g `  R ) ) )
7675, 46sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  y )  =  0 )
7776oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  ( ( F `  x
)  x.  0 ) )
7861, 70ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  x )  e.  RR )
7978recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  x )  e.  CC )
8079adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  x )  e.  CC )
8180mul01d 10235 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  0 )  =  0 )
8277, 81eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  0 )
8368, 74, 823eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
84 simpl1 1064 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ph )
85 isabvd.t . . . . . . . . . . . . 13  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
8684, 85syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .x.  =  ( .r `  R ) )
8786oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  (
x  .x.  y )  =  ( x ( .r `  R ) y ) )
8887fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .x.  y ) )  =  ( F `  (
x ( .r `  R ) y ) ) )
89 simpl2 1065 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  e.  ( Base `  R
) )
9084, 2syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  B  =  ( Base `  R
) )
9189, 90eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  e.  B )
92 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  =/=  ( 0g `  R
) )
9384, 9syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .0.  =  ( 0g `  R ) )
9492, 93neeqtrrd 2868 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  =/=  .0.  )
95 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  e.  ( Base `  R
) )
9695, 90eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  e.  B )
97 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  =/=  ( 0g `  R
) )
9897, 93neeqtrrd 2868 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  =/=  .0.  )
99 isabvd.5 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
10084, 91, 94, 96, 98, 99syl122anc 1335 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
) )
10188, 100eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
10267, 83, 101pm2.61da2ne 2882 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
103 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x ( +g  `  R
) y )  =  ( ( 0g `  R ) ( +g  `  R ) y ) )
104 ringgrp 18552 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. 
Grp )
10550, 104syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  R  e.  Grp )
106 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  R )  =  ( +g  `  R )
10752, 106, 54grplid 17452 . . . . . . . . . . . . 13  |-  ( ( R  e.  Grp  /\  y  e.  ( Base `  R ) )  -> 
( ( 0g `  R ) ( +g  `  R ) y )  =  y )
108105, 51, 107syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( 0g
`  R ) ( +g  `  R ) y )  =  y )
109103, 108sylan9eqr 2678 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( x
( +g  `  R ) y )  =  y )
110109fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 y ) )
1118, 59syl5breqr 4691 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  0  <_  ( F `  x ) )
11262, 78addge02d 10616 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
113112adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( 0  <_  ( F `  x )  <->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
114111, 113mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
115110, 114eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
116 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  ( 0g `  R )  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  R ) ( 0g
`  R ) ) )
11752, 106, 54grprid 17453 . . . . . . . . . . . . 13  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( x ( +g  `  R ) ( 0g
`  R ) )  =  x )
118105, 70, 117syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( +g  `  R ) ( 0g `  R
) )  =  x )
119116, 118sylan9eqr 2678 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( x
( +g  `  R ) y )  =  x )
120119fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 x ) )
1218, 76syl5breqr 4691 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  0  <_  ( F `  y ) )
12278, 62addge01d 10615 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( 0  <_ 
( F `  y
)  <->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
123122adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( 0  <_  ( F `  y )  <->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
124121, 123mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
125120, 124eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
126 isabvd.p . . . . . . . . . . . . 13  |-  ( ph  ->  .+  =  ( +g  `  R ) )
12784, 126syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .+  =  ( +g  `  R ) )
128127oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  (
x  .+  y )  =  ( x ( +g  `  R ) y ) )
129128fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .+  y ) )  =  ( F `  (
x ( +g  `  R
) y ) ) )
130 isabvd.6 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .+  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
13184, 91, 94, 96, 98, 130syl122anc 1335 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .+  y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
132129, 131eqbrtrrd 4677 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
133115, 125, 132pm2.61da2ne 2882 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
134102, 133jca 554 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )
1351343expia 1267 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( y  e.  ( Base `  R
)  ->  ( ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) )  /\  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) ) ) )
136135ralrimiv 2965 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )
13745, 136jca 554 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R ) ( ( F `  ( x ( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) )  /\  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) ) ) )
138137ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  R )
( ( ( F `
 x )  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) )
139 eqid 2622 . . . . 5  |-  (AbsVal `  R )  =  (AbsVal `  R )
140139, 52, 106, 53, 54isabv 18819 . . . 4  |-  ( R  e.  Ring  ->  ( F  e.  (AbsVal `  R
)  <->  ( F :
( Base `  R ) --> ( 0 [,) +oo )  /\  A. x  e.  ( Base `  R
) ( ( ( F `  x )  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) ) ) )
14149, 140syl 17 . . 3  |-  ( ph  ->  ( F  e.  (AbsVal `  R )  <->  ( F : ( Base `  R
) --> ( 0 [,) +oo )  /\  A. x  e.  ( Base `  R
) ( ( ( F `  x )  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) ) ) )
14238, 138, 141mpbir2and 957 . 2  |-  ( ph  ->  F  e.  (AbsVal `  R ) )
143 isabvd.a . 2  |-  ( ph  ->  A  =  (AbsVal `  R ) )
144142, 143eleqtrrd 2704 1  |-  ( ph  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075   [,)cico 12177   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   Ringcrg 18547  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ico 12181  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ring 18549  df-abv 18817
This theorem is referenced by:  abvres  18839  abvtrivd  18840  absabv  19803  abvcxp  25304  padicabv  25319
  Copyright terms: Public domain W3C validator