MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfi Structured version   Visualization version   Unicode version

Theorem iunfi 8254
Description: The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 8255. Note that  B depends on  x, i.e. can be thought of as  B ( x ). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
iunfi  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin )  ->  U_ x  e.  A  B  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunfi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3138 . . . 4  |-  ( w  =  (/)  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  (/)  B  e.  Fin ) )
2 iuneq1 4534 . . . . . 6  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  U_ x  e.  (/)  B )
3 0iun 4577 . . . . . 6  |-  U_ x  e.  (/)  B  =  (/)
42, 3syl6eq 2672 . . . . 5  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  (/) )
54eleq1d 2686 . . . 4  |-  ( w  =  (/)  ->  ( U_ x  e.  w  B  e.  Fin  <->  (/)  e.  Fin )
)
61, 5imbi12d 334 . . 3  |-  ( w  =  (/)  ->  ( ( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  (/)  B  e.  Fin  -> 
(/)  e.  Fin )
) )
7 raleq 3138 . . . 4  |-  ( w  =  y  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  y  B  e.  Fin ) )
8 iuneq1 4534 . . . . 5  |-  ( w  =  y  ->  U_ x  e.  w  B  =  U_ x  e.  y  B )
98eleq1d 2686 . . . 4  |-  ( w  =  y  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  y  B  e.  Fin ) )
107, 9imbi12d 334 . . 3  |-  ( w  =  y  ->  (
( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin ) ) )
11 raleq 3138 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. x  e.  w  B  e.  Fin 
<-> 
A. x  e.  ( y  u.  { z } ) B  e. 
Fin ) )
12 iuneq1 4534 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  U_ x  e.  w  B  =  U_ x  e.  ( y  u.  {
z } ) B )
1312eleq1d 2686 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( U_ x  e.  w  B  e.  Fin 
<-> 
U_ x  e.  ( y  u.  { z } ) B  e. 
Fin ) )
1411, 13imbi12d 334 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin ) 
<->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) ) )
15 raleq 3138 . . . 4  |-  ( w  =  A  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  A  B  e.  Fin ) )
16 iuneq1 4534 . . . . 5  |-  ( w  =  A  ->  U_ x  e.  w  B  =  U_ x  e.  A  B
)
1716eleq1d 2686 . . . 4  |-  ( w  =  A  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  A  B  e.  Fin ) )
1815, 17imbi12d 334 . . 3  |-  ( w  =  A  ->  (
( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  A  B  e.  Fin  ->  U_ x  e.  A  B  e.  Fin ) ) )
19 0fin 8188 . . . 4  |-  (/)  e.  Fin
2019a1i 11 . . 3  |-  ( A. x  e.  (/)  B  e. 
Fin  ->  (/)  e.  Fin )
21 ssun1 3776 . . . . . . 7  |-  y  C_  ( y  u.  {
z } )
22 ssralv 3666 . . . . . . 7  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  A. x  e.  y  B  e.  Fin ) )
2321, 22ax-mp 5 . . . . . 6  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  A. x  e.  y  B  e.  Fin )
2423imim1i 63 . . . . 5  |-  ( ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  -> 
( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin ) )
25 iunxun 4605 . . . . . . 7  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
26 nfcv 2764 . . . . . . . . . . 11  |-  F/_ y B
27 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ x [_ y  /  x ]_ B
28 csbeq1a 3542 . . . . . . . . . . 11  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
2926, 27, 28cbviun 4557 . . . . . . . . . 10  |-  U_ x  e.  { z } B  =  U_ y  e.  {
z } [_ y  /  x ]_ B
30 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
31 csbeq1 3536 . . . . . . . . . . 11  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
3230, 31iunxsn 4603 . . . . . . . . . 10  |-  U_ y  e.  { z } [_ y  /  x ]_ B  =  [_ z  /  x ]_ B
3329, 32eqtri 2644 . . . . . . . . 9  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
34 ssun2 3777 . . . . . . . . . . 11  |-  { z }  C_  ( y  u.  { z } )
35 vsnid 4209 . . . . . . . . . . 11  |-  z  e. 
{ z }
3634, 35sselii 3600 . . . . . . . . . 10  |-  z  e.  ( y  u.  {
z } )
37 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ x [_ z  /  x ]_ B
3837nfel1 2779 . . . . . . . . . . 11  |-  F/ x [_ z  /  x ]_ B  e.  Fin
39 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4039eleq1d 2686 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( B  e.  Fin  <->  [_ z  /  x ]_ B  e.  Fin ) )
4138, 40rspc 3303 . . . . . . . . . 10  |-  ( z  e.  ( y  u. 
{ z } )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  [_ z  /  x ]_ B  e. 
Fin ) )
4236, 41ax-mp 5 . . . . . . . . 9  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  [_ z  /  x ]_ B  e.  Fin )
4333, 42syl5eqel 2705 . . . . . . . 8  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  U_ x  e.  { z } B  e.  Fin )
44 unfi 8227 . . . . . . . 8  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  U_ x  e.  { z } B  e.  Fin )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
Fin )
4543, 44sylan2 491 . . . . . . 7  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  A. x  e.  ( y  u.  { z } ) B  e.  Fin )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
Fin )
4625, 45syl5eqel 2705 . . . . . 6  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  A. x  e.  ( y  u.  { z } ) B  e.  Fin )  ->  U_ x  e.  ( y  u.  { z } ) B  e. 
Fin )
4746expcom 451 . . . . 5  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  (
U_ x  e.  y  B  e.  Fin  ->  U_ x  e.  ( y  u.  { z } ) B  e.  Fin ) )
4824, 47sylcom 30 . . . 4  |-  ( ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  -> 
( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) )
4948a1i 11 . . 3  |-  ( y  e.  Fin  ->  (
( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) ) )
506, 10, 14, 18, 20, 49findcard2 8200 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  B  e.  Fin  ->  U_ x  e.  A  B  e.  Fin ) )
5150imp 445 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin )  ->  U_ x  e.  A  B  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  unifi  8255  infssuni  8257  ixpfi  8263  ackbij1lem9  9050  ackbij1lem10  9051  fsuppmapnn0fiublem  12789  fsuppmapnn0fiub  12790  fsuppmapnn0fiubOLD  12791  fsum2dlem  14501  fsumcom2  14505  fsumcom2OLD  14506  fsumiun  14553  hashiun  14554  hash2iun  14555  ackbijnn  14560  fprod2dlem  14710  fprodcom2  14714  fprodcom2OLD  14715  ablfaclem3  18486  pmatcoe1fsupp  20506  locfincmp  21329  txcmplem2  21445  alexsubALTlem3  21853  aannenlem1  24083  fsumvma  24938  numedglnl  26039  fsumiunle  29575  poimirlem30  33439  fiphp3d  37383  hbt  37700  cnrefiisplem  40055
  Copyright terms: Public domain W3C validator