Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn6 Structured version   Visualization version   Unicode version

Theorem cdlemn6 36491
Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
Assertion
Ref Expression
cdlemn6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, h, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn6
Dummy variables  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp3l 1089 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
s  e.  E )
3 cdlemn8.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 cdlemn8.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 cdlemn8.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 cdlemn8.p . . . . . . 7  |-  P  =  ( ( oc `  K ) `  W
)
73, 4, 5, 6lhpocnel2 35305 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
81, 7syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
9 simp2l 1087 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
10 cdlemn8.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemn8.f . . . . . 6  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
123, 4, 5, 10, 11ltrniotacl 35867 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
131, 8, 9, 12syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  F  e.  T )
14 cdlemn8.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
155, 10, 14tendocl 36055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
161, 2, 13, 15syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s `  F
)  e.  T )
17 simp3r 1090 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
g  e.  T )
18 cdlemn8.b . . . . 5  |-  B  =  ( Base `  K
)
19 cdlemn8.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
2018, 5, 10, 14, 19tendo0cl 36078 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
211, 20syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  O  e.  E )
22 cdlemn8.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
23 eqid 2622 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
24 cdlemn8.s . . . 4  |-  .+  =  ( +g  `  U )
25 eqid 2622 . . . 4  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
265, 10, 14, 22, 23, 24, 25dvhopvadd 36382 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 F )  e.  T  /\  s  e.  E )  /\  (
g  e.  T  /\  O  e.  E )
)  ->  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )  =  <. ( ( s `
 F )  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
271, 16, 2, 17, 21, 26syl122anc 1335 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
28 eqid 2622 . . . . . . 7  |-  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )
295, 10, 14, 22, 23, 28, 25dvhfplusr 36373 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
301, 29syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
3130oveqd 6667 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  ( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O ) )
3218, 5, 10, 14, 19, 28tendo0plr 36080 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) O )  =  s )
331, 2, 32syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O )  =  s )
3431, 33eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  s )
3534opeq2d 4409 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  <. ( ( s `  F )  o.  g
) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >.  =  <. ( ( s `  F
)  o.  g ) ,  s >. )
3627, 35eqtrd 2656 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   lecple 15948   occoc 15949   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  cdlemn7  36492  dihordlem6  36502
  Copyright terms: Public domain W3C validator