MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkinwwlk Structured version   Visualization version   Unicode version

Theorem clwwlkinwwlk 26905
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 23-Jan-2022.)
Assertion
Ref Expression
clwwlkinwwlk  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  W  e.  ( M WWalksN  G )  /\  ( W `
 N )  =  ( W `  0
) )  ->  ( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G ) )

Proof of Theorem clwwlkinwwlk
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . 3  |-  (Edg `  G )  =  (Edg
`  G )
31, 2wwlknp 26734 . 2  |-  ( W  e.  ( M WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
4 swrdcl 13419 . . . . . . . . . . . 12  |-  ( W  e. Word  (Vtx `  G
)  ->  ( W substr  <.
0 ,  N >. )  e. Word  (Vtx `  G
) )
54adantr 481 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  ->  ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G ) )
65adantr 481 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G ) )
7 simpll 790 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  W  e. Word  (Vtx `  G )
)
8 simprl 794 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  NN )
9 eluz2 11693 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
10 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
11 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  M  e.  RR )
12 id 22 . . . . . . . . . . . . . . . . 17  |-  ( N  <_  M  ->  N  <_  M )
1310, 11, 123anim123i 1247 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M )  ->  ( N  e.  RR  /\  M  e.  RR  /\  N  <_  M ) )
149, 13sylbi 207 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( N  e.  RR  /\  M  e.  RR  /\  N  <_  M ) )
15 letrp1 10865 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  N  <_  M )  ->  N  <_  ( M  +  1 ) )
1614, 15syl 17 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  ( M  +  1 ) )
1716adantl 482 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  N  <_  ( M  + 
1 ) )
1817adantl 482 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  <_  ( M  +  1 ) )
19 breq2 4657 . . . . . . . . . . . . 13  |-  ( (
# `  W )  =  ( M  + 
1 )  ->  ( N  <_  ( # `  W
)  <->  N  <_  ( M  +  1 ) ) )
2019ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( N  <_  ( # `  W
)  <->  N  <_  ( M  +  1 ) ) )
2118, 20mpbird 247 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  <_  ( # `  W
) )
22 swrdn0 13430 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  NN  /\  N  <_ 
( # `  W ) )  ->  ( W substr  <.
0 ,  N >. )  =/=  (/) )
237, 8, 21, 22syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( W substr  <. 0 ,  N >. )  =/=  (/) )
246, 23jca 554 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G )  /\  ( W substr  <. 0 ,  N >. )  =/=  (/) ) )
25243adantl3 1219 . . . . . . . 8  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) ) )  ->  ( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G
)  /\  ( W substr  <.
0 ,  N >. )  =/=  (/) ) )
2625adantr 481 . . . . . . 7  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G )  /\  ( W substr  <. 0 ,  N >. )  =/=  (/) ) )
27 nnz 11399 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 1nn0 11308 . . . . . . . . . . . . . . . . . 18  |-  1  e.  NN0
29 eluzmn 11694 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  1  e.  NN0 )  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
3027, 28, 29sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
31 uzss 11708 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  ( N  - 
1 ) ) )
3230, 31syl 17 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( ZZ>=
`  N )  C_  ( ZZ>= `  ( N  -  1 ) ) )
3332sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  ( N  -  1
) ) )
34 fzoss2 12496 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0..^ ( N  -  1 ) )  C_  (
0..^ M ) )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0..^ M ) )
36353ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ M ) )
37 ssralv 3666 . . . . . . . . . . . . 13  |-  ( ( 0..^ ( N  - 
1 ) )  C_  ( 0..^ M )  -> 
( A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
3836, 37syl 17 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( A. i  e.  (
0..^ M ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  ->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
39383exp 1264 . . . . . . . . . . 11  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( M  +  1 )  ->  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  ( A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  A. i  e.  (
0..^ ( N  - 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) ) ) )
4039com34 91 . . . . . . . . . 10  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( M  +  1 )  ->  ( A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  -> 
( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) ) ) )
41403imp1 1280 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) ) )  ->  A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) )
4241adantr 481 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  A. i  e.  (
0..^ ( N  - 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) )
43 nnnn0 11299 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  NN0 )
44 elnn0uz 11725 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
4543, 44sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  0 )
)
46 eluzfz 12337 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ( ZZ>= `  N )
)  ->  N  e.  ( 0 ... M
) )
4745, 46sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  N  e.  ( 0 ... M ) )
48 fzelp1 12393 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( 0 ... M )  ->  N  e.  ( 0 ... ( M  +  1 ) ) )
4947, 48syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  N  e.  ( 0 ... ( M  + 
1 ) ) )
5049adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 0 ... ( M  +  1 ) ) )
51 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  =  ( M  + 
1 )  ->  (
0 ... ( # `  W
) )  =  ( 0 ... ( M  +  1 ) ) )
5251eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  W )  =  ( M  + 
1 )  ->  ( N  e.  ( 0 ... ( # `  W
) )  <->  N  e.  ( 0 ... ( M  +  1 ) ) ) )
5352ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( N  e.  ( 0 ... ( # `  W
) )  <->  N  e.  ( 0 ... ( M  +  1 ) ) ) )
5450, 53mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 0 ... ( # `
 W ) ) )
55 swrd0len 13422 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0 ... ( # `
 W ) ) )  ->  ( # `  ( W substr  <. 0 ,  N >. ) )  =  N )
567, 54, 55syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( # `
 ( W substr  <. 0 ,  N >. ) )  =  N )
5756oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
( # `  ( W substr  <. 0 ,  N >. ) )  -  1 )  =  ( N  - 
1 ) )
5857oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  - 
1 ) )  =  ( 0..^ ( N  -  1 ) ) )
5958raleqdv 3144 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( A. i  e.  (
0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  - 
1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `
 i ) ,  ( ( W substr  <. 0 ,  N >. ) `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
607adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  W  e. Word  (Vtx
`  G ) )
6154adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  ( 0 ... ( # `
 W ) ) )
6230ad2antrl 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
63 fzoss2 12496 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0..^ ( N  -  1 ) )  C_  (
0..^ N ) )
6462, 63syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ N ) )
6564sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  i  e.  ( 0..^ N ) )
66 swrd0fv 13439 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0 ... ( # `
 W ) )  /\  i  e.  ( 0..^ N ) )  ->  ( ( W substr  <. 0 ,  N >. ) `
 i )  =  ( W `  i
) )
6760, 61, 65, 66syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  ( ( W substr  <. 0 ,  N >. ) `  i )  =  ( W `  i ) )
6827ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ZZ )
69 elfzom1elp1fzo 12534 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( i  +  1 )  e.  ( 0..^ N ) )
7068, 69sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  ( i  +  1 )  e.  ( 0..^ N ) )
71 swrd0fv 13439 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0 ... ( # `
 W ) )  /\  ( i  +  1 )  e.  ( 0..^ N ) )  ->  ( ( W substr  <. 0 ,  N >. ) `
 ( i  +  1 ) )  =  ( W `  (
i  +  1 ) ) )
7260, 61, 70, 71syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) )  =  ( W `  ( i  +  1 ) ) )
7367, 72preq12d 4276 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  { (
( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  =  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) } )
7473eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  e.  ( 0..^ ( N  -  1 ) ) )  ->  ( {
( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
7574ralbidva 2985 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
7659, 75bitrd 268 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( A. i  e.  (
0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  - 
1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
77763adantl3 1219 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  ( W substr  <.
0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i ) ,  ( ( W substr  <. 0 ,  N >. ) `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  <->  A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
7877adantr 481 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( A. i  e.  ( 0..^ ( (
# `  ( W substr  <.
0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i ) ,  ( ( W substr  <. 0 ,  N >. ) `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  <->  A. i  e.  ( 0..^ ( N  - 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
) ) )
7942, 78mpbird 247 . . . . . . 7  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  A. i  e.  (
0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  - 
1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G ) )
80 elfz1uz 12410 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  N  e.  ( 1 ... M ) )
81 fzelp1 12393 . . . . . . . . . . . . . 14  |-  ( N  e.  ( 1 ... M )  ->  N  e.  ( 1 ... ( M  +  1 ) ) )
8280, 81syl 17 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  N  e.  ( 1 ... ( M  + 
1 ) ) )
8382adantl 482 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 1 ... ( M  +  1 ) ) )
84 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( (
# `  W )  =  ( M  + 
1 )  ->  (
1 ... ( # `  W
) )  =  ( 1 ... ( M  +  1 ) ) )
8584eleq2d 2687 . . . . . . . . . . . . 13  |-  ( (
# `  W )  =  ( M  + 
1 )  ->  ( N  e.  ( 1 ... ( # `  W
) )  <->  N  e.  ( 1 ... ( M  +  1 ) ) ) )
8685ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( N  e.  ( 1 ... ( # `  W
) )  <->  N  e.  ( 1 ... ( M  +  1 ) ) ) )
8783, 86mpbird 247 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 1 ... ( # `
 W ) ) )
88 swrd0fvlsw 13443 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 W ) ) )  ->  ( lastS  `  ( W substr  <. 0 ,  N >. ) )  =  ( W `  ( N  -  1 ) ) )
89 swrd0fv0 13440 . . . . . . . . . . . 12  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( W substr  <. 0 ,  N >. ) `  0 )  =  ( W ` 
0 ) )
9088, 89preq12d 4276 . . . . . . . . . . 11  |-  ( ( W  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 W ) ) )  ->  { ( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  =  {
( W `  ( N  -  1 ) ) ,  ( W `
 0 ) } )
917, 87, 90syl2anc 693 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  { ( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  =  {
( W `  ( N  -  1 ) ) ,  ( W `
 0 ) } )
92913adantl3 1219 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) ) )  ->  { ( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  =  {
( W `  ( N  -  1 ) ) ,  ( W `
 0 ) } )
9392adantr 481 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  { ( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0 ) }  =  { ( W `  ( N  -  1 ) ) ,  ( W ` 
0 ) } )
94 fz1fzo0m1 12515 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( 1 ... M )  ->  ( N  -  1 )  e.  ( 0..^ M ) )
9580, 94syl 17 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  -> 
( N  -  1 )  e.  ( 0..^ M ) )
96953ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( N  -  1 )  e.  ( 0..^ M ) )
97 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  i  =  ( N  -  1 ) )
9897fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  ( W `  i )  =  ( W `  ( N  -  1 ) ) )
99 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  ( N  - 
1 )  ->  (
i  +  1 )  =  ( ( N  -  1 )  +  1 ) )
100 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  N  e.  CC )
101 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
10399, 102sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  ( i  +  1 )  =  N )
104103fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  ( W `  ( i  +  1 ) )  =  ( W `  N ) )
10598, 104preq12d 4276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  =  {
( W `  ( N  -  1 ) ) ,  ( W `
 N ) } )
106105eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  i  =  ( N  -  1 ) )  ->  ( { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) )
107106ex 450 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
i  =  ( N  -  1 )  -> 
( { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) )
108107adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  -> 
( i  =  ( N  -  1 )  ->  ( { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) )
1091083ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  (
i  =  ( N  -  1 )  -> 
( { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) )
110109imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  i  =  ( N  - 
1 ) )  -> 
( { ( W `
 i ) ,  ( W `  (
i  +  1 ) ) }  e.  (Edg
`  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) )
11196, 110rspcdv 3312 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( A. i  e.  (
0..^ M ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  ->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) )
1121113exp 1264 . . . . . . . . . . . 12  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( M  +  1 )  ->  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  ( A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) ) )
113112com34 91 . . . . . . . . . . 11  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( M  +  1 )  ->  ( A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G )  -> 
( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  e.  (Edg `  G ) ) ) ) )
1141133imp1 1280 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) ) )  ->  { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) }  e.  (Edg
`  G ) )
115114adantr 481 . . . . . . . . 9  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G ) )
116 preq2 4269 . . . . . . . . . . 11  |-  ( ( W `  N )  =  ( W ` 
0 )  ->  { ( W `  ( N  -  1 ) ) ,  ( W `  N ) }  =  { ( W `  ( N  -  1
) ) ,  ( W `  0 ) } )
117116eleq1d 2686 . . . . . . . . . 10  |-  ( ( W `  N )  =  ( W ` 
0 )  ->  ( { ( W `  ( N  -  1
) ) ,  ( W `  N ) }  e.  (Edg `  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) ) )
118117adantl 482 . . . . . . . . 9  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( { ( W `
 ( N  - 
1 ) ) ,  ( W `  N
) }  e.  (Edg
`  G )  <->  { ( W `  ( N  -  1 ) ) ,  ( W ` 
0 ) }  e.  (Edg `  G ) ) )
119115, 118mpbid 222 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  { ( W `  ( N  -  1
) ) ,  ( W `  0 ) }  e.  (Edg `  G ) )
12093, 119eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  ->  { ( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0 ) }  e.  (Edg `  G ) )
12126, 79, 1203jca 1242 . . . . . 6  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( ( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G
)  /\  ( W substr  <.
0 ,  N >. )  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  e.  (Edg
`  G ) ) )
122121exp31 630 . . . . 5  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  -> 
( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  ( ( W `  N )  =  ( W ` 
0 )  ->  (
( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G )  /\  ( W substr  <. 0 ,  N >. )  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  e.  (Edg
`  G ) ) ) ) )
1231223imp21 1277 . . . 4  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( ( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G
)  /\  ( W substr  <.
0 ,  N >. )  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  e.  (Edg
`  G ) ) )
1241, 2isclwwlks 26880 . . . 4  |-  ( ( W substr  <. 0 ,  N >. )  e.  (ClWWalks `  G
)  <->  ( ( ( W substr  <. 0 ,  N >. )  e. Word  (Vtx `  G )  /\  ( W substr  <. 0 ,  N >. )  =/=  (/) )  /\  A. i  e.  ( 0..^ ( ( # `  ( W substr  <. 0 ,  N >. ) )  -  1 ) ) { ( ( W substr  <. 0 ,  N >. ) `  i
) ,  ( ( W substr  <. 0 ,  N >. ) `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  ( W substr  <. 0 ,  N >. ) ) ,  ( ( W substr  <. 0 ,  N >. ) `  0
) }  e.  (Edg
`  G ) ) )
125123, 124sylibr 224 . . 3  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( W substr  <. 0 ,  N >. )  e.  (ClWWalks `  G ) )
12647adantl 482 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 0 ... M
) )
127126, 48syl 17 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 0 ... ( M  +  1 ) ) )
128127, 53mpbird 247 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  N  e.  ( 0 ... ( # `
 W ) ) )
1297, 128jca 554 . . . . . . . 8  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  /\  ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
) )  ->  ( W  e. Word  (Vtx `  G
)  /\  N  e.  ( 0 ... ( # `
 W ) ) ) )
130129ex 450 . . . . . . 7  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 ) )  ->  (
( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  -> 
( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0 ... ( # `
 W ) ) ) ) )
1311303adant3 1081 . . . . . 6  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  -> 
( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N )
)  ->  ( W  e. Word  (Vtx `  G )  /\  N  e.  (
0 ... ( # `  W
) ) ) ) )
132131impcom 446 . . . . 5  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )  ->  ( W  e. Word 
(Vtx `  G )  /\  N  e.  (
0 ... ( # `  W
) ) ) )
1331323adant3 1081 . . . 4  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( W  e. Word  (Vtx `  G )  /\  N  e.  ( 0 ... ( # `
 W ) ) ) )
134133, 55syl 17 . . 3  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( # `  ( W substr  <. 0 ,  N >. ) )  =  N )
135 isclwwlksn 26882 . . . . 5  |-  ( N  e.  NN  ->  (
( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G )  <->  ( ( W substr  <. 0 ,  N >. )  e.  (ClWWalks `  G
)  /\  ( # `  ( W substr  <. 0 ,  N >. ) )  =  N ) ) )
136135adantr 481 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  -> 
( ( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G )  <->  ( ( W substr  <. 0 ,  N >. )  e.  (ClWWalks `  G
)  /\  ( # `  ( W substr  <. 0 ,  N >. ) )  =  N ) ) )
1371363ad2ant1 1082 . . 3  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( ( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G )  <->  ( ( W substr  <. 0 ,  N >. )  e.  (ClWWalks `  G
)  /\  ( # `  ( W substr  <. 0 ,  N >. ) )  =  N ) ) )
138125, 134, 137mpbir2and 957 . 2  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( M  +  1 )  /\  A. i  e.  ( 0..^ M ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( W `  N )  =  ( W ` 
0 ) )  -> 
( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G ) )
1393, 138syl3an2 1360 1  |-  ( ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  /\  W  e.  ( M WWalksN  G )  /\  ( W `
 N )  =  ( W `  0
) )  ->  ( W substr  <. 0 ,  N >. )  e.  ( N ClWWalksN  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {cpr 4179   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718  ClWWalkscclwwlks 26875   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  extwwlkfablem2  27210
  Copyright terms: Public domain W3C validator