MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrm1rusgr Structured version   Visualization version   Unicode version

Theorem cusgrm1rusgr 26478
Description: A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for  k  e.  ZZ, then the assumption  V  =/=  (/) could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
cusgrm1rusgr  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  ( G  e. ComplUSGraph 
<->  G RegUSGraph  ( ( # `  V
)  -  1 ) ) )

Proof of Theorem cusgrm1rusgr
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  /\  G  e. ComplUSGraph )  ->  G  e. ComplUSGraph )
2 cusgrrusgr.v . . . . . . 7  |-  V  =  (Vtx `  G )
32fusgrvtxfi 26211 . . . . . 6  |-  ( G  e. FinUSGraph  ->  V  e.  Fin )
43adantr 481 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  V  e. 
Fin )
54adantr 481 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  /\  G  e. ComplUSGraph )  ->  V  e.  Fin )
6 simpr 477 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  V  =/=  (/) )
76adantr 481 . . . 4  |-  ( ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  /\  G  e. ComplUSGraph )  ->  V  =/=  (/) )
82cusgrrusgr 26477 . . . 4  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin  /\  V  =/=  (/) )  ->  G RegUSGraph  ( (
# `  V )  -  1 ) )
91, 5, 7, 8syl3anc 1326 . . 3  |-  ( ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  /\  G  e. ComplUSGraph )  ->  G RegUSGraph  ( (
# `  V )  -  1 ) )
109ex 450 . 2  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  ( G  e. ComplUSGraph  ->  G RegUSGraph  ( ( # `  V )  -  1 ) ) )
11 eqid 2622 . . . . 5  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
122, 11rusgrprop0 26463 . . . 4  |-  ( G RegUSGraph  ( ( # `  V
)  -  1 )  ->  ( G  e. USGraph  /\  ( ( # `  V
)  -  1 )  e. NN0*  /\  A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  ( (
# `  V )  -  1 ) ) )
1312simp3d 1075 . . 3  |-  ( G RegUSGraph  ( ( # `  V
)  -  1 )  ->  A. v  e.  V  ( (VtxDeg `  G ) `  v )  =  ( ( # `  V
)  -  1 ) )
142vdiscusgr 26427 . . . 4  |-  ( G  e. FinUSGraph  ->  ( A. v  e.  V  ( (VtxDeg `  G ) `  v
)  =  ( (
# `  V )  -  1 )  ->  G  e. ComplUSGraph ) )
1514adantr 481 . . 3  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  ( A. v  e.  V  (
(VtxDeg `  G ) `  v )  =  ( ( # `  V
)  -  1 )  ->  G  e. ComplUSGraph ) )
1613, 15syl5 34 . 2  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  ( G RegUSGraph  ( ( # `  V
)  -  1 )  ->  G  e. ComplUSGraph ) )
1710, 16impbid 202 1  |-  ( ( G  e. FinUSGraph  /\  V  =/=  (/) )  ->  ( G  e. ComplUSGraph 
<->  G RegUSGraph  ( ( # `  V
)  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    - cmin 10266  NN0*cxnn0 11363   #chash 13117  Vtxcvtx 25874   USGraph cusgr 26044   FinUSGraph cfusgr 26208  ComplUSGraphccusgr 26227  VtxDegcvtxdg 26361   RegUSGraph crusgr 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator