Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeqiooicc Structured version   Visualization version   Unicode version

Theorem ditgeqiooicc 40176
Description: A function  F on an open interval, has the same directed integral as its extension  G on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ditgeqiooicc.1  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
ditgeqiooicc.2  |-  ( ph  ->  A  e.  RR )
ditgeqiooicc.3  |-  ( ph  ->  B  e.  RR )
ditgeqiooicc.4  |-  ( ph  ->  A  <_  B )
ditgeqiooicc.5  |-  ( ph  ->  F : ( A (,) B ) --> RR )
Assertion
Ref Expression
ditgeqiooicc  |-  ( ph  ->  S__ [ A  ->  B ] ( F `  x )  _d x  =  S__ [ A  ->  B ] ( G `
 x )  _d x )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    R( x)    F( x)    G( x)    L( x)

Proof of Theorem ditgeqiooicc
StepHypRef Expression
1 ioossicc 12259 . . . . . . 7  |-  ( A (,) B )  C_  ( A [,] B )
21sseli 3599 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
32adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A [,] B ) )
4 ditgeqiooicc.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
54adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  e.  RR )
6 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A (,) B ) )
75rexrd 10089 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  e.  RR* )
8 ditgeqiooicc.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR )
98adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  B  e.  RR )
109rexrd 10089 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  B  e.  RR* )
11 elioo2 12216 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <  B ) ) )
127, 10, 11syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( x  e.  ( A (,) B
)  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <  B ) ) )
136, 12mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( x  e.  RR  /\  A  < 
x  /\  x  <  B ) )
1413simp2d 1074 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  <  x )
155, 14gtned 10172 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  A )
1615neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  A )
1716iffalsed 4097 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
1813simp1d 1073 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  RR )
1913simp3d 1075 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  <  B )
2018, 19ltned 10173 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  B )
2120neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  B )
2221iffalsed 4097 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  ( F `  x
) )
2317, 22eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
24 ditgeqiooicc.5 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> RR )
2524ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  RR )
2623, 25eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  RR )
27 ditgeqiooicc.1 . . . . . 6  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
2827fvmpt2 6291 . . . . 5  |-  ( ( x  e.  ( A [,] B )  /\  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  e.  RR )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
293, 26, 28syl2anc 693 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
3029, 17, 223eqtrrd 2661 . . 3  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  =  ( G `  x ) )
3130itgeq2dv 23548 . 2  |-  ( ph  ->  S. ( A (,) B ) ( F `
 x )  _d x  =  S. ( A (,) B ) ( G `  x
)  _d x )
32 ditgeqiooicc.4 . . 3  |-  ( ph  ->  A  <_  B )
3332ditgpos 23620 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( F `  x )  _d x  =  S. ( A (,) B ) ( F `  x )  _d x )
3432ditgpos 23620 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( G `  x )  _d x  =  S. ( A (,) B ) ( G `  x )  _d x )
3531, 33, 343eqtr4d 2666 1  |-  ( ph  ->  S__ [ A  ->  B ] ( F `  x )  _d x  =  S__ [ A  ->  B ] ( G `
 x )  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   S.citg 23387   S__cdit 23610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ioo 12179  df-icc 12182  df-fz 12327  df-seq 12802  df-sum 14417  df-itg 23392  df-ditg 23611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator