MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   Unicode version

Theorem drngnidl 19229
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b  |-  B  =  ( Base `  R
)
drngnidl.z  |-  .0.  =  ( 0g `  R )
drngnidl.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
drngnidl  |-  ( R  e.  DivRing  ->  U  =  { {  .0.  } ,  B } )

Proof of Theorem drngnidl
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =  {  .0.  } )  ->  a  =  {  .0.  } )
21orcd 407 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =  {  .0.  } )  ->  (
a  =  {  .0.  }  \/  a  =  B ) )
3 drngring 18754 . . . . . . . . . . 11  |-  ( R  e.  DivRing  ->  R  e.  Ring )
43ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  R  e.  Ring )
5 simplr 792 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  e.  U )
6 simpr 477 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  =/=  {  .0.  } )
7 drngnidl.u . . . . . . . . . . 11  |-  U  =  (LIdeal `  R )
8 drngnidl.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
97, 8lidlnz 19228 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  a  e.  U  /\  a  =/=  {  .0.  } )  ->  E. b  e.  a  b  =/=  .0.  )
104, 5, 6, 9syl3anc 1326 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  E. b  e.  a  b  =/=  .0.  )
11 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  R  e.  DivRing )
12 drngnidl.b . . . . . . . . . . . . . . . . 17  |-  B  =  ( Base `  R
)
1312, 7lidlss 19210 . . . . . . . . . . . . . . . 16  |-  ( a  e.  U  ->  a  C_  B )
1413adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  a  C_  B )
1514sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  b  e.  a
)  ->  b  e.  B )
1615adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  e.  B )
17 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  =/=  .0.  )
18 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
19 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 1r
`  R )  =  ( 1r `  R
)
20 eqid 2622 . . . . . . . . . . . . . 14  |-  ( invr `  R )  =  (
invr `  R )
2112, 8, 18, 19, 20drnginvrl 18766 . . . . . . . . . . . . 13  |-  ( ( R  e.  DivRing  /\  b  e.  B  /\  b  =/=  .0.  )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  =  ( 1r `  R
) )
2211, 16, 17, 21syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  =  ( 1r `  R
) )
233ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  R  e.  Ring )
24 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  a  e.  U )
2512, 8, 20drnginvrcl 18764 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  b  e.  B  /\  b  =/=  .0.  )  ->  (
( invr `  R ) `  b )  e.  B
)
2611, 16, 17, 25syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( invr `  R ) `  b )  e.  B
)
27 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  b  e.  a )
287, 12, 18lidlmcl 19217 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  a  e.  U )  /\  ( ( (
invr `  R ) `  b )  e.  B  /\  b  e.  a
) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  e.  a )
2923, 24, 26, 27, 28syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  (
( ( invr `  R
) `  b )
( .r `  R
) b )  e.  a )
3022, 29eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  ( b  e.  a  /\  b  =/=  .0.  ) )  ->  ( 1r `  R )  e.  a )
3130rexlimdvaa 3032 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  ( E. b  e.  a 
b  =/=  .0.  ->  ( 1r `  R )  e.  a ) )
3231imp 445 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  E. b  e.  a  b  =/=  .0.  )  ->  ( 1r `  R
)  e.  a )
3310, 32syldan 487 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( 1r `  R )  e.  a )
347, 12, 19lidl1el 19218 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  a  e.  U )  ->  (
( 1r `  R
)  e.  a  <->  a  =  B ) )
353, 34sylan 488 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  (
( 1r `  R
)  e.  a  <->  a  =  B ) )
3635adantr 481 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( ( 1r `  R )  e.  a  <->  a  =  B ) )
3733, 36mpbid 222 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  a  =  B )
3837olcd 408 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  a  e.  U )  /\  a  =/=  {  .0.  } )  ->  ( a  =  {  .0.  }  \/  a  =  B )
)
392, 38pm2.61dane 2881 . . . . 5  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  (
a  =  {  .0.  }  \/  a  =  B ) )
40 vex 3203 . . . . . 6  |-  a  e. 
_V
4140elpr 4198 . . . . 5  |-  ( a  e.  { {  .0.  } ,  B }  <->  ( a  =  {  .0.  }  \/  a  =  B )
)
4239, 41sylibr 224 . . . 4  |-  ( ( R  e.  DivRing  /\  a  e.  U )  ->  a  e.  { {  .0.  } ,  B } )
4342ex 450 . . 3  |-  ( R  e.  DivRing  ->  ( a  e.  U  ->  a  e.  { {  .0.  } ,  B } ) )
4443ssrdv 3609 . 2  |-  ( R  e.  DivRing  ->  U  C_  { {  .0.  } ,  B }
)
457, 8lidl0 19219 . . . 4  |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
467, 12lidl1 19220 . . . 4  |-  ( R  e.  Ring  ->  B  e.  U )
47 snex 4908 . . . . . 6  |-  {  .0.  }  e.  _V
48 fvex 6201 . . . . . . 7  |-  ( Base `  R )  e.  _V
4912, 48eqeltri 2697 . . . . . 6  |-  B  e. 
_V
5047, 49prss 4351 . . . . 5  |-  ( ( {  .0.  }  e.  U  /\  B  e.  U
)  <->  { {  .0.  } ,  B }  C_  U
)
5150bicomi 214 . . . 4  |-  ( { {  .0.  } ,  B }  C_  U  <->  ( {  .0.  }  e.  U  /\  B  e.  U )
)
5245, 46, 51sylanbrc 698 . . 3  |-  ( R  e.  Ring  ->  { {  .0.  } ,  B }  C_  U )
533, 52syl 17 . 2  |-  ( R  e.  DivRing  ->  { {  .0.  } ,  B }  C_  U )
5444, 53eqssd 3620 1  |-  ( R  e.  DivRing  ->  U  =  { {  .0.  } ,  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747  LIdealclidl 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174
This theorem is referenced by:  drnglpir  19253
  Copyright terms: Public domain W3C validator