MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   Unicode version

Theorem efgredeu 18165
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgredeu  |-  ( A  e.  W  ->  E! d  e.  D  d  .~  A )
Distinct variable groups:    A, d    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w   
k, m, t, x, T    k, d, m, n, t, v, w, x, y, z, W    .~ , d, m, t, x, y, z    S, d   
m, I, n, t, v, w, x, y, z    D, d, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n, d)    I( k, d)    M( y, z, k, d)

Proof of Theorem efgredeu
Dummy variables  a 
b  c  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . 5  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsfo 18152 . . . 4  |-  S : dom  S -onto-> W
8 foelrn 6378 . . . 4  |-  ( ( S : dom  S -onto-> W  /\  A  e.  W
)  ->  E. a  e.  dom  S  A  =  ( S `  a
) )
97, 8mpan 706 . . 3  |-  ( A  e.  W  ->  E. a  e.  dom  S  A  =  ( S `  a
) )
101, 2, 3, 4, 5, 6efgsdm 18143 . . . . . . . 8  |-  ( a  e.  dom  S  <->  ( a  e.  (Word  W  \  { (/)
} )  /\  (
a `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  a ) ) ( a `  i )  e.  ran  ( T `
 ( a `  ( i  -  1 ) ) ) ) )
1110simp2bi 1077 . . . . . . 7  |-  ( a  e.  dom  S  -> 
( a `  0
)  e.  D )
1211adantl 482 . . . . . 6  |-  ( ( A  e.  W  /\  a  e.  dom  S )  ->  ( a ` 
0 )  e.  D
)
131, 2, 3, 4, 5, 6efgsrel 18147 . . . . . . 7  |-  ( a  e.  dom  S  -> 
( a `  0
)  .~  ( S `  a ) )
1413adantl 482 . . . . . 6  |-  ( ( A  e.  W  /\  a  e.  dom  S )  ->  ( a ` 
0 )  .~  ( S `  a )
)
15 breq1 4656 . . . . . . 7  |-  ( d  =  ( a ` 
0 )  ->  (
d  .~  ( S `  a )  <->  ( a `  0 )  .~  ( S `  a ) ) )
1615rspcev 3309 . . . . . 6  |-  ( ( ( a `  0
)  e.  D  /\  ( a `  0
)  .~  ( S `  a ) )  ->  E. d  e.  D  d  .~  ( S `  a ) )
1712, 14, 16syl2anc 693 . . . . 5  |-  ( ( A  e.  W  /\  a  e.  dom  S )  ->  E. d  e.  D  d  .~  ( S `  a ) )
18 breq2 4657 . . . . . 6  |-  ( A  =  ( S `  a )  ->  (
d  .~  A  <->  d  .~  ( S `  a ) ) )
1918rexbidv 3052 . . . . 5  |-  ( A  =  ( S `  a )  ->  ( E. d  e.  D  d  .~  A  <->  E. d  e.  D  d  .~  ( S `  a ) ) )
2017, 19syl5ibrcom 237 . . . 4  |-  ( ( A  e.  W  /\  a  e.  dom  S )  ->  ( A  =  ( S `  a
)  ->  E. d  e.  D  d  .~  A ) )
2120rexlimdva 3031 . . 3  |-  ( A  e.  W  ->  ( E. a  e.  dom  S  A  =  ( S `
 a )  ->  E. d  e.  D  d  .~  A ) )
229, 21mpd 15 . 2  |-  ( A  e.  W  ->  E. d  e.  D  d  .~  A )
231, 2efger 18131 . . . . . . 7  |-  .~  Er  W
2423a1i 11 . . . . . 6  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  .~  Er  W
)
25 simprl 794 . . . . . 6  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  d  .~  A
)
26 simprr 796 . . . . . 6  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  c  .~  A
)
2724, 25, 26ertr4d 7761 . . . . 5  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  d  .~  c
)
281, 2, 3, 4, 5, 6efgrelex 18164 . . . . . 6  |-  ( d  .~  c  ->  E. a  e.  ( `' S " { d } ) E. b  e.  ( `' S " { c } ) ( a `
 0 )  =  ( b `  0
) )
29 fofn 6117 . . . . . . . . . . . . . 14  |-  ( S : dom  S -onto-> W  ->  S  Fn  dom  S
)
30 fniniseg 6338 . . . . . . . . . . . . . 14  |-  ( S  Fn  dom  S  -> 
( a  e.  ( `' S " { d } )  <->  ( a  e.  dom  S  /\  ( S `  a )  =  d ) ) )
317, 29, 30mp2b 10 . . . . . . . . . . . . 13  |-  ( a  e.  ( `' S " { d } )  <-> 
( a  e.  dom  S  /\  ( S `  a )  =  d ) )
3231simplbi 476 . . . . . . . . . . . 12  |-  ( a  e.  ( `' S " { d } )  ->  a  e.  dom  S )
3332ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  a  e.  dom  S )
341, 2, 3, 4, 5, 6efgsval 18144 . . . . . . . . . . 11  |-  ( a  e.  dom  S  -> 
( S `  a
)  =  ( a `
 ( ( # `  a )  -  1 ) ) )
3533, 34syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  a )  =  ( a `  ( (
# `  a )  -  1 ) ) )
3631simprbi 480 . . . . . . . . . . 11  |-  ( a  e.  ( `' S " { d } )  ->  ( S `  a )  =  d )
3736ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  a )  =  d )
38 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( d  e.  D  /\  c  e.  D ) )
3938simpld 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  d  e.  D
)
4037, 39eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  a )  e.  D
)
411, 2, 3, 4, 5, 6efgs1b 18149 . . . . . . . . . . . . . . 15  |-  ( a  e.  dom  S  -> 
( ( S `  a )  e.  D  <->  (
# `  a )  =  1 ) )
4233, 41syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( S `
 a )  e.  D  <->  ( # `  a
)  =  1 ) )
4340, 42mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( # `  a
)  =  1 )
4443oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( # `  a )  -  1 )  =  ( 1  -  1 ) )
45 1m1e0 11089 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
4644, 45syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( # `  a )  -  1 )  =  0 )
4746fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( a `  ( ( # `  a
)  -  1 ) )  =  ( a `
 0 ) )
4835, 37, 473eqtr3rd 2665 . . . . . . . . 9  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( a ` 
0 )  =  d )
49 fniniseg 6338 . . . . . . . . . . . . . 14  |-  ( S  Fn  dom  S  -> 
( b  e.  ( `' S " { c } )  <->  ( b  e.  dom  S  /\  ( S `  b )  =  c ) ) )
507, 29, 49mp2b 10 . . . . . . . . . . . . 13  |-  ( b  e.  ( `' S " { c } )  <-> 
( b  e.  dom  S  /\  ( S `  b )  =  c ) )
5150simplbi 476 . . . . . . . . . . . 12  |-  ( b  e.  ( `' S " { c } )  ->  b  e.  dom  S )
5251ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  b  e.  dom  S )
531, 2, 3, 4, 5, 6efgsval 18144 . . . . . . . . . . 11  |-  ( b  e.  dom  S  -> 
( S `  b
)  =  ( b `
 ( ( # `  b )  -  1 ) ) )
5452, 53syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  b )  =  ( b `  ( (
# `  b )  -  1 ) ) )
5550simprbi 480 . . . . . . . . . . 11  |-  ( b  e.  ( `' S " { c } )  ->  ( S `  b )  =  c )
5655ad2antll 765 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  b )  =  c )
5738simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  c  e.  D
)
5856, 57eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( S `  b )  e.  D
)
591, 2, 3, 4, 5, 6efgs1b 18149 . . . . . . . . . . . . . . 15  |-  ( b  e.  dom  S  -> 
( ( S `  b )  e.  D  <->  (
# `  b )  =  1 ) )
6052, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( S `
 b )  e.  D  <->  ( # `  b
)  =  1 ) )
6158, 60mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( # `  b
)  =  1 )
6261oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( # `  b )  -  1 )  =  ( 1  -  1 ) )
6362, 45syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( # `  b )  -  1 )  =  0 )
6463fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( b `  ( ( # `  b
)  -  1 ) )  =  ( b `
 0 ) )
6554, 56, 643eqtr3rd 2665 . . . . . . . . 9  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( b ` 
0 )  =  c )
6648, 65eqeq12d 2637 . . . . . . . 8  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( a `
 0 )  =  ( b `  0
)  <->  d  =  c ) )
6766biimpd 219 . . . . . . 7  |-  ( ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D ) )  /\  ( d  .~  A  /\  c  .~  A ) )  /\  ( a  e.  ( `' S " { d } )  /\  b  e.  ( `' S " { c } ) ) )  ->  ( ( a `
 0 )  =  ( b `  0
)  ->  d  =  c ) )
6867rexlimdvva 3038 . . . . . 6  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  ( E. a  e.  ( `' S " { d } ) E. b  e.  ( `' S " { c } ) ( a `
 0 )  =  ( b `  0
)  ->  d  =  c ) )
6928, 68syl5 34 . . . . 5  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  ( d  .~  c  ->  d  =  c ) )
7027, 69mpd 15 . . . 4  |-  ( ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  /\  (
d  .~  A  /\  c  .~  A ) )  ->  d  =  c )
7170ex 450 . . 3  |-  ( ( A  e.  W  /\  ( d  e.  D  /\  c  e.  D
) )  ->  (
( d  .~  A  /\  c  .~  A )  ->  d  =  c ) )
7271ralrimivva 2971 . 2  |-  ( A  e.  W  ->  A. d  e.  D  A. c  e.  D  ( (
d  .~  A  /\  c  .~  A )  -> 
d  =  c ) )
73 breq1 4656 . . 3  |-  ( d  =  c  ->  (
d  .~  A  <->  c  .~  A ) )
7473reu4 3400 . 2  |-  ( E! d  e.  D  d  .~  A  <->  ( E. d  e.  D  d  .~  A  /\  A. d  e.  D  A. c  e.  D  ( (
d  .~  A  /\  c  .~  A )  -> 
d  =  c ) ) )
7522, 72, 74sylanbrc 698 1  |-  ( A  e.  W  ->  E! d  e.  D  d  .~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by:  efgred2  18166  frgpnabllem2  18277
  Copyright terms: Public domain W3C validator