MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdm Structured version   Visualization version   Unicode version

Theorem efgsdm 18143
Description: Elementhood in the domain of  S, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsdm  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
Distinct variable groups:    y, z    i, F    t, n, v, w, y, z    i, m, n, t, v, w, x, M    i, k, T, m, t, x    y,
i, z, W    k, n, v, w, y, z, W, m, t, x    .~ , i, m, t, x, y, z    S, i   
i, I, m, n, t, v, w, x, y, z    D, i, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsdm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq1 6190 . . . . 5  |-  ( f  =  F  ->  (
f `  0 )  =  ( F ` 
0 ) )
21eleq1d 2686 . . . 4  |-  ( f  =  F  ->  (
( f `  0
)  e.  D  <->  ( F `  0 )  e.  D ) )
3 fveq2 6191 . . . . . 6  |-  ( f  =  F  ->  ( # `
 f )  =  ( # `  F
) )
43oveq2d 6666 . . . . 5  |-  ( f  =  F  ->  (
1..^ ( # `  f
) )  =  ( 1..^ ( # `  F
) ) )
5 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  i )  =  ( F `  i ) )
6 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( i  -  1 ) )  =  ( F `  ( i  -  1 ) ) )
76fveq2d 6195 . . . . . . 7  |-  ( f  =  F  ->  ( T `  ( f `  ( i  -  1 ) ) )  =  ( T `  ( F `  ( i  -  1 ) ) ) )
87rneqd 5353 . . . . . 6  |-  ( f  =  F  ->  ran  ( T `  ( f `
 ( i  - 
1 ) ) )  =  ran  ( T `
 ( F `  ( i  -  1 ) ) ) )
95, 8eleq12d 2695 . . . . 5  |-  ( f  =  F  ->  (
( f `  i
)  e.  ran  ( T `  ( f `  ( i  -  1 ) ) )  <->  ( F `  i )  e.  ran  ( T `  ( F `
 ( i  - 
1 ) ) ) ) )
104, 9raleqbidv 3152 . . . 4  |-  ( f  =  F  ->  ( A. i  e.  (
1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
112, 10anbi12d 747 . . 3  |-  ( f  =  F  ->  (
( ( f ` 
0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) ) )  <->  ( ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) ) )
12 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 efgval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
14 efgval2.m . . . . . 6  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
15 efgval2.t . . . . . 6  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
16 efgred.d . . . . . 6  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
17 efgred.s . . . . . 6  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
1812, 13, 14, 15, 16, 17efgsf 18142 . . . . 5  |-  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W
1918fdmi 6052 . . . 4  |-  dom  S  =  { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) }
20 fveq1 6190 . . . . . . 7  |-  ( t  =  f  ->  (
t `  0 )  =  ( f ` 
0 ) )
2120eleq1d 2686 . . . . . 6  |-  ( t  =  f  ->  (
( t `  0
)  e.  D  <->  ( f `  0 )  e.  D ) )
22 fveq2 6191 . . . . . . . . 9  |-  ( k  =  i  ->  (
t `  k )  =  ( t `  i ) )
23 oveq1 6657 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
k  -  1 )  =  ( i  - 
1 ) )
2423fveq2d 6195 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
t `  ( k  -  1 ) )  =  ( t `  ( i  -  1 ) ) )
2524fveq2d 6195 . . . . . . . . . 10  |-  ( k  =  i  ->  ( T `  ( t `  ( k  -  1 ) ) )  =  ( T `  (
t `  ( i  -  1 ) ) ) )
2625rneqd 5353 . . . . . . . . 9  |-  ( k  =  i  ->  ran  ( T `  ( t `
 ( k  - 
1 ) ) )  =  ran  ( T `
 ( t `  ( i  -  1 ) ) ) )
2722, 26eleq12d 2695 . . . . . . . 8  |-  ( k  =  i  ->  (
( t `  k
)  e.  ran  ( T `  ( t `  ( k  -  1 ) ) )  <->  ( t `  i )  e.  ran  ( T `  ( t `
 ( i  - 
1 ) ) ) ) )
2827cbvralv 3171 . . . . . . 7  |-  ( A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  t ) ) ( t `  i )  e.  ran  ( T `
 ( t `  ( i  -  1 ) ) ) )
29 fveq2 6191 . . . . . . . . 9  |-  ( t  =  f  ->  ( # `
 t )  =  ( # `  f
) )
3029oveq2d 6666 . . . . . . . 8  |-  ( t  =  f  ->  (
1..^ ( # `  t
) )  =  ( 1..^ ( # `  f
) ) )
31 fveq1 6190 . . . . . . . . 9  |-  ( t  =  f  ->  (
t `  i )  =  ( f `  i ) )
32 fveq1 6190 . . . . . . . . . . 11  |-  ( t  =  f  ->  (
t `  ( i  -  1 ) )  =  ( f `  ( i  -  1 ) ) )
3332fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  f  ->  ( T `  ( t `  ( i  -  1 ) ) )  =  ( T `  (
f `  ( i  -  1 ) ) ) )
3433rneqd 5353 . . . . . . . . 9  |-  ( t  =  f  ->  ran  ( T `  ( t `
 ( i  - 
1 ) ) )  =  ran  ( T `
 ( f `  ( i  -  1 ) ) ) )
3531, 34eleq12d 2695 . . . . . . . 8  |-  ( t  =  f  ->  (
( t `  i
)  e.  ran  ( T `  ( t `  ( i  -  1 ) ) )  <->  ( f `  i )  e.  ran  ( T `  ( f `
 ( i  - 
1 ) ) ) ) )
3630, 35raleqbidv 3152 . . . . . . 7  |-  ( t  =  f  ->  ( A. i  e.  (
1..^ ( # `  t
) ) ( t `
 i )  e. 
ran  ( T `  ( t `  (
i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) )
3728, 36syl5bb 272 . . . . . 6  |-  ( t  =  f  ->  ( A. k  e.  (
1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) )
3821, 37anbi12d 747 . . . . 5  |-  ( t  =  f  ->  (
( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) )  <->  ( (
f `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) ) )
3938cbvrabv 3199 . . . 4  |-  { t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) }  =  { f  e.  (Word  W  \  { (/)
} )  |  ( ( f `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) ) ) }
4019, 39eqtri 2644 . . 3  |-  dom  S  =  { f  e.  (Word 
W  \  { (/) } )  |  ( ( f `
 0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) }
4111, 40elrab2 3366 . 2  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  (
( F `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) ) )
42 3anass 1042 . 2  |-  ( ( F  e.  (Word  W  \  { (/) } )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) )  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  (
( F `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) ) )
4341, 42bitr4i 267 1  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  efgsdmi  18145  efgsrel  18147  efgs1  18148  efgs1b  18149  efgsp1  18150  efgsres  18151  efgsfo  18152  efgredlema  18153  efgredlemf  18154  efgredlemd  18157  efgredlemc  18158  efgredlem  18160  efgrelexlemb  18163  efgredeu  18165  efgred2  18166
  Copyright terms: Public domain W3C validator