MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyr Structured version   Visualization version   Unicode version

Theorem elplyr 23957
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elplyr  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Distinct variable groups:    z, k, A    k, N, z    S, k, z

Proof of Theorem elplyr
Dummy variables  a  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  S  C_  CC )
2 simp2 1062 . . 3  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  N  e.  NN0 )
3 simp3 1063 . . . . 5  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  A : NN0 --> S )
4 ssun1 3776 . . . . 5  |-  S  C_  ( S  u.  { 0 } )
5 fss 6056 . . . . 5  |-  ( ( A : NN0 --> S  /\  S  C_  ( S  u.  { 0 } ) )  ->  A : NN0 --> ( S  u.  { 0 } ) )
63, 4, 5sylancl 694 . . . 4  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  A : NN0 --> ( S  u.  { 0 } ) )
7 0cnd 10033 . . . . . . . 8  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  0  e.  CC )
87snssd 4340 . . . . . . 7  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  { 0 }  C_  CC )
91, 8unssd 3789 . . . . . 6  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  ( S  u.  { 0 } )  C_  CC )
10 cnex 10017 . . . . . 6  |-  CC  e.  _V
11 ssexg 4804 . . . . . 6  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
129, 10, 11sylancl 694 . . . . 5  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  ( S  u.  { 0 } )  e.  _V )
13 nn0ex 11298 . . . . 5  |-  NN0  e.  _V
14 elmapg 7870 . . . . 5  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1512, 13, 14sylancl 694 . . . 4  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) 
<->  A : NN0 --> ( S  u.  { 0 } ) ) )
166, 15mpbird 247 . . 3  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
17 eqidd 2623 . . 3  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
1918sumeq1d 14431 . . . . . 6  |-  ( n  =  N  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( a `  k
)  x.  ( z ^ k ) ) )
2019mpteq2dv 4745 . . . . 5  |-  ( n  =  N  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( a `
 k )  x.  ( z ^ k
) ) ) )
2120eqeq2d 2632 . . . 4  |-  ( n  =  N  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
22 fveq1 6190 . . . . . . . 8  |-  ( a  =  A  ->  (
a `  k )  =  ( A `  k ) )
2322oveq1d 6665 . . . . . . 7  |-  ( a  =  A  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( z ^ k
) ) )
2423sumeq2sdv 14435 . . . . . 6  |-  ( a  =  A  ->  sum_ k  e.  ( 0 ... N
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
2524mpteq2dv 4745 . . . . 5  |-  ( a  =  A  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( a `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
2625eqeq2d 2632 . . . 4  |-  ( a  =  A  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( a `
 k )  x.  ( z ^ k
) ) )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) ) )
2721, 26rspc2ev 3324 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
282, 16, 17, 27syl3anc 1326 . 2  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
29 elply 23951 . 2  |-  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  S )  <->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
301, 28, 29sylanbrc 698 1  |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0
--> S )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936    x. cmul 9941   NN0cn0 11292   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-ply 23944
This theorem is referenced by:  elplyd  23958  plypf1  23968  elaa2lem  40450
  Copyright terms: Public domain W3C validator