Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2lem Structured version   Visualization version   Unicode version

Theorem elaa2lem 40450
Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 40451. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
elaa2lem.a  |-  ( ph  ->  A  e.  AA )
elaa2lem.an0  |-  ( ph  ->  A  =/=  0 )
elaa2lem.g  |-  ( ph  ->  G  e.  (Poly `  ZZ ) )
elaa2lem.gn0  |-  ( ph  ->  G  =/=  0p )
elaa2lem.ga  |-  ( ph  ->  ( G `  A
)  =  0 )
elaa2lem.m  |-  M  = inf ( { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } ,  RR ,  <  )
elaa2lem.i  |-  I  =  ( k  e.  NN0  |->  ( (coeff `  G ) `  ( k  +  M
) ) )
elaa2lem.f  |-  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg `  G )  -  M
) ) ( ( I `  k )  x.  ( z ^
k ) ) )
Assertion
Ref Expression
elaa2lem  |-  ( ph  ->  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
Distinct variable groups:    A, f    A, k, z    f, F   
k, G    n, G    z, G    k, I, z   
k, M    n, M    z, M    ph, k, z
Allowed substitution hints:    ph( f, n)    A( n)    F( z, k, n)    G( f)    I( f, n)    M( f)

Proof of Theorem elaa2lem
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 elaa2lem.f . . . 4  |-  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg `  G )  -  M
) ) ( ( I `  k )  x.  ( z ^
k ) ) )
21a1i 11 . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (
(deg `  G )  -  M ) ) ( ( I `  k
)  x.  ( z ^ k ) ) ) )
3 zsscn 11385 . . . . 5  |-  ZZ  C_  CC
43a1i 11 . . . 4  |-  ( ph  ->  ZZ  C_  CC )
5 elaa2lem.g . . . . . . . . 9  |-  ( ph  ->  G  e.  (Poly `  ZZ ) )
6 dgrcl 23989 . . . . . . . . 9  |-  ( G  e.  (Poly `  ZZ )  ->  (deg `  G
)  e.  NN0 )
75, 6syl 17 . . . . . . . 8  |-  ( ph  ->  (deg `  G )  e.  NN0 )
87nn0zd 11480 . . . . . . 7  |-  ( ph  ->  (deg `  G )  e.  ZZ )
9 elaa2lem.m . . . . . . . . 9  |-  M  = inf ( { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } ,  RR ,  <  )
10 ssrab2 3687 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } 
C_  NN0
11 nn0uz 11722 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
1210, 11sseqtri 3637 . . . . . . . . . . . 12  |-  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } 
C_  ( ZZ>= `  0
)
1312a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  C_  ( ZZ>=
`  0 ) )
14 elaa2lem.gn0 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  =/=  0p )
1514neneqd 2799 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  G  =  0p )
16 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (deg `  G )  =  (deg
`  G )
17 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (coeff `  G )  =  (coeff `  G )
1816, 17dgreq0 24021 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  (Poly `  ZZ )  ->  ( G  =  0p  <->  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) )
195, 18syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G  =  0p  <->  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) )
2015, 19mtbid 314 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  ( (coeff `  G ) `  (deg `  G ) )  =  0 )
2120neqned 2801 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (coeff `  G
) `  (deg `  G
) )  =/=  0
)
227, 21jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (deg `  G
)  e.  NN0  /\  ( (coeff `  G ) `  (deg `  G )
)  =/=  0 ) )
23 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( n  =  (deg `  G
)  ->  ( (coeff `  G ) `  n
)  =  ( (coeff `  G ) `  (deg `  G ) ) )
2423neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( n  =  (deg `  G
)  ->  ( (
(coeff `  G ) `  n )  =/=  0  <->  ( (coeff `  G ) `  (deg `  G )
)  =/=  0 ) )
2524elrab 3363 . . . . . . . . . . . . 13  |-  ( (deg
`  G )  e. 
{ n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  <->  ( (deg `  G )  e.  NN0  /\  ( (coeff `  G
) `  (deg `  G
) )  =/=  0
) )
2622, 25sylibr 224 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  e.  { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 } )
27 ne0i 3921 . . . . . . . . . . . 12  |-  ( (deg
`  G )  e. 
{ n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  ->  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 }  =/=  (/) )
2826, 27syl 17 . . . . . . . . . . 11  |-  ( ph  ->  { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  =/=  (/) )
29 infssuzcl 11772 . . . . . . . . . . 11  |-  ( ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  C_  ( ZZ>=
`  0 )  /\  { n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 }  =/=  (/) )  -> inf ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  )  e.  {
n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 } )
3013, 28, 29syl2anc 693 . . . . . . . . . 10  |-  ( ph  -> inf ( { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } ,  RR ,  <  )  e.  { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } )
3110, 30sseldi 3601 . . . . . . . . 9  |-  ( ph  -> inf ( { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } ,  RR ,  <  )  e.  NN0 )
329, 31syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
3332nn0zd 11480 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
348, 33zsubcld 11487 . . . . . 6  |-  ( ph  ->  ( (deg `  G
)  -  M )  e.  ZZ )
359a1i 11 . . . . . . . 8  |-  ( ph  ->  M  = inf ( { n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  ) )
36 infssuzle 11771 . . . . . . . . 9  |-  ( ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  C_  ( ZZ>=
`  0 )  /\  (deg `  G )  e. 
{ n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 } )  -> inf ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  )  <_  (deg `  G ) )
3713, 26, 36syl2anc 693 . . . . . . . 8  |-  ( ph  -> inf ( { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } ,  RR ,  <  )  <_  (deg `  G
) )
3835, 37eqbrtrd 4675 . . . . . . 7  |-  ( ph  ->  M  <_  (deg `  G
) )
397nn0red 11352 . . . . . . . 8  |-  ( ph  ->  (deg `  G )  e.  RR )
4032nn0red 11352 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
4139, 40subge0d 10617 . . . . . . 7  |-  ( ph  ->  ( 0  <_  (
(deg `  G )  -  M )  <->  M  <_  (deg
`  G ) ) )
4238, 41mpbird 247 . . . . . 6  |-  ( ph  ->  0  <_  ( (deg `  G )  -  M
) )
4334, 42jca 554 . . . . 5  |-  ( ph  ->  ( ( (deg `  G )  -  M
)  e.  ZZ  /\  0  <_  ( (deg `  G )  -  M
) ) )
44 elnn0z 11390 . . . . 5  |-  ( ( (deg `  G )  -  M )  e.  NN0  <->  (
( (deg `  G
)  -  M )  e.  ZZ  /\  0  <_  ( (deg `  G
)  -  M ) ) )
4543, 44sylibr 224 . . . 4  |-  ( ph  ->  ( (deg `  G
)  -  M )  e.  NN0 )
46 id 22 . . . . . . . . 9  |-  ( G  e.  (Poly `  ZZ )  ->  G  e.  (Poly `  ZZ ) )
47 0zd 11389 . . . . . . . . 9  |-  ( G  e.  (Poly `  ZZ )  ->  0  e.  ZZ )
4817coef2 23987 . . . . . . . . 9  |-  ( ( G  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  G ) : NN0 --> ZZ )
4946, 47, 48syl2anc 693 . . . . . . . 8  |-  ( G  e.  (Poly `  ZZ )  ->  (coeff `  G
) : NN0 --> ZZ )
505, 49syl 17 . . . . . . 7  |-  ( ph  ->  (coeff `  G ) : NN0 --> ZZ )
5150adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  (coeff `  G
) : NN0 --> ZZ )
52 simpr 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
5332adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  M  e.  NN0 )
5452, 53nn0addcld 11355 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  M )  e.  NN0 )
5551, 54ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (coeff `  G ) `  (
k  +  M ) )  e.  ZZ )
56 elaa2lem.i . . . . 5  |-  I  =  ( k  e.  NN0  |->  ( (coeff `  G ) `  ( k  +  M
) ) )
5755, 56fmptd 6385 . . . 4  |-  ( ph  ->  I : NN0 --> ZZ )
58 elplyr 23957 . . . 4  |-  ( ( ZZ  C_  CC  /\  (
(deg `  G )  -  M )  e.  NN0  /\  I : NN0 --> ZZ )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( I `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  ZZ ) )
594, 45, 57, 58syl3anc 1326 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg `  G )  -  M
) ) ( ( I `  k )  x.  ( z ^
k ) ) )  e.  (Poly `  ZZ ) )
602, 59eqeltrd 2701 . 2  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
61 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  ( (deg `  G
)  -  M ) )  ->  k  <_  ( (deg `  G )  -  M ) )
6261iftrued 4094 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  ( (deg `  G
)  -  M ) )  ->  if (
k  <_  ( (deg `  G )  -  M
) ,  ( (coeff `  G ) `  (
k  +  M ) ) ,  0 )  =  ( (coeff `  G ) `  (
k  +  M ) ) )
63 iffalse 4095 . . . . . . . . . . 11  |-  ( -.  k  <_  ( (deg `  G )  -  M
)  ->  if (
k  <_  ( (deg `  G )  -  M
) ,  ( (coeff `  G ) `  (
k  +  M ) ) ,  0 )  =  0 )
6463adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  if ( k  <_  (
(deg `  G )  -  M ) ,  ( (coeff `  G ) `  ( k  +  M
) ) ,  0 )  =  0 )
65 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  -.  k  <_  ( (deg `  G )  -  M
) )
6639ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (deg `  G )  e.  RR )
6740ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  M  e.  RR )
6866, 67resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
(deg `  G )  -  M )  e.  RR )
69 nn0re 11301 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  RR )
7069ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  k  e.  RR )
7168, 70ltnled 10184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
( (deg `  G
)  -  M )  <  k  <->  -.  k  <_  ( (deg `  G
)  -  M ) ) )
7265, 71mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
(deg `  G )  -  M )  <  k
)
7366, 67, 70ltsubaddd 10623 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
( (deg `  G
)  -  M )  <  k  <->  (deg `  G
)  <  ( k  +  M ) ) )
7472, 73mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (deg `  G )  <  (
k  +  M ) )
75 olc 399 . . . . . . . . . . . . 13  |-  ( (deg
`  G )  < 
( k  +  M
)  ->  ( G  =  0p  \/  (deg `  G )  <  ( k  +  M
) ) )
7674, 75syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  ( G  =  0p  \/  (deg `  G )  <  ( k  +  M
) ) )
775ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  G  e.  (Poly `  ZZ )
)
7854adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
k  +  M )  e.  NN0 )
7916, 17dgrlt 24022 . . . . . . . . . . . . 13  |-  ( ( G  e.  (Poly `  ZZ )  /\  (
k  +  M )  e.  NN0 )  -> 
( ( G  =  0p  \/  (deg `  G )  <  (
k  +  M ) )  <->  ( (deg `  G )  <_  (
k  +  M )  /\  ( (coeff `  G ) `  (
k  +  M ) )  =  0 ) ) )
8077, 78, 79syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
( G  =  0p  \/  (deg `  G )  <  (
k  +  M ) )  <->  ( (deg `  G )  <_  (
k  +  M )  /\  ( (coeff `  G ) `  (
k  +  M ) )  =  0 ) ) )
8176, 80mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
(deg `  G )  <_  ( k  +  M
)  /\  ( (coeff `  G ) `  (
k  +  M ) )  =  0 ) )
8281simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  (
(coeff `  G ) `  ( k  +  M
) )  =  0 )
8364, 82eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  ( (deg `  G )  -  M
) )  ->  if ( k  <_  (
(deg `  G )  -  M ) ,  ( (coeff `  G ) `  ( k  +  M
) ) ,  0 )  =  ( (coeff `  G ) `  (
k  +  M ) ) )
8462, 83pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  <_  ( (deg `  G )  -  M
) ,  ( (coeff `  G ) `  (
k  +  M ) ) ,  0 )  =  ( (coeff `  G ) `  (
k  +  M ) ) )
8584mpteq2dva 4744 . . . . . . 7  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  <_  (
(deg `  G )  -  M ) ,  ( (coeff `  G ) `  ( k  +  M
) ) ,  0 ) )  =  ( k  e.  NN0  |->  ( (coeff `  G ) `  (
k  +  M ) ) ) )
8650, 4fssd 6057 . . . . . . . . . 10  |-  ( ph  ->  (coeff `  G ) : NN0 --> CC )
8786adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  (coeff `  G
) : NN0 --> CC )
88 elfznn0 12433 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( (deg `  G
)  -  M ) )  ->  k  e.  NN0 )
8988adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  k  e.  NN0 )
9032adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  M  e.  NN0 )
9189, 90nn0addcld 11355 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( k  +  M )  e.  NN0 )
9287, 91ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( (coeff `  G ) `  (
k  +  M ) )  e.  CC )
93 eqidd 2623 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... ( (deg `  G )  -  M
) )  =  ( 0 ... ( (deg
`  G )  -  M ) ) )
94 simpl 473 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ph )
9556a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  I  =  ( k  e.  NN0  |->  ( (coeff `  G ) `  (
k  +  M ) ) ) )
9695, 55fvmpt2d 6293 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
9794, 89, 96syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
9897adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
9998oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( ( I `
 k )  x.  ( z ^ k
) )  =  ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( z ^ k
) ) )
10093, 99sumeq12rdv 14438 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... (
(deg `  G )  -  M ) ) ( ( I `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( z ^ k
) ) )
101100mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg `  G )  -  M
) ) ( ( I `  k )  x.  ( z ^
k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( z ^ k
) ) ) )
1022, 101eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (
(deg `  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( z ^ k
) ) ) )
10360, 45, 92, 102coeeq2 23998 . . . . . . 7  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  ( (deg `  G )  -  M
) ,  ( (coeff `  G ) `  (
k  +  M ) ) ,  0 ) ) )
10485, 103, 953eqtr4d 2666 . . . . . 6  |-  ( ph  ->  (coeff `  F )  =  I )
105104fveq1d 6193 . . . . 5  |-  ( ph  ->  ( (coeff `  F
) `  0 )  =  ( I ` 
0 ) )
106 oveq1 6657 . . . . . . . . 9  |-  ( k  =  0  ->  (
k  +  M )  =  ( 0  +  M ) )
107106adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  = 
0 )  ->  (
k  +  M )  =  ( 0  +  M ) )
1083, 33sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
109108addid2d 10237 . . . . . . . . 9  |-  ( ph  ->  ( 0  +  M
)  =  M )
110109adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  = 
0 )  ->  (
0  +  M )  =  M )
111107, 110eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  k  = 
0 )  ->  (
k  +  M )  =  M )
112111fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  k  = 
0 )  ->  (
(coeff `  G ) `  ( k  +  M
) )  =  ( (coeff `  G ) `  M ) )
113 0nn0 11307 . . . . . . 7  |-  0  e.  NN0
114113a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  NN0 )
11550, 32ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( (coeff `  G
) `  M )  e.  ZZ )
11695, 112, 114, 115fvmptd 6288 . . . . 5  |-  ( ph  ->  ( I `  0
)  =  ( (coeff `  G ) `  M
) )
117 eqidd 2623 . . . . 5  |-  ( ph  ->  ( (coeff `  G
) `  M )  =  ( (coeff `  G ) `  M
) )
118105, 116, 1173eqtrd 2660 . . . 4  |-  ( ph  ->  ( (coeff `  F
) `  0 )  =  ( (coeff `  G ) `  M
) )
11935, 30eqeltrd 2701 . . . . . 6  |-  ( ph  ->  M  e.  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } )
120 fveq2 6191 . . . . . . . 8  |-  ( n  =  M  ->  (
(coeff `  G ) `  n )  =  ( (coeff `  G ) `  M ) )
121120neeq1d 2853 . . . . . . 7  |-  ( n  =  M  ->  (
( (coeff `  G
) `  n )  =/=  0  <->  ( (coeff `  G ) `  M
)  =/=  0 ) )
122121elrab 3363 . . . . . 6  |-  ( M  e.  { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 }  <-> 
( M  e.  NN0  /\  ( (coeff `  G
) `  M )  =/=  0 ) )
123119, 122sylib 208 . . . . 5  |-  ( ph  ->  ( M  e.  NN0  /\  ( (coeff `  G
) `  M )  =/=  0 ) )
124123simprd 479 . . . 4  |-  ( ph  ->  ( (coeff `  G
) `  M )  =/=  0 )
125118, 124eqnetrd 2861 . . 3  |-  ( ph  ->  ( (coeff `  F
) `  0 )  =/=  0 )
1265, 47syl 17 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
127 aasscn 24073 . . . . . . . . . . 11  |-  AA  C_  CC
128 elaa2lem.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  AA )
129127, 128sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
13094, 129syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  A  e.  CC )
131130, 89expcld 13008 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( A ^
k )  e.  CC )
13292, 131mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( ( (coeff `  G ) `  (
k  +  M ) )  x.  ( A ^ k ) )  e.  CC )
133 oveq1 6657 . . . . . . . . 9  |-  ( k  =  ( j  -  M )  ->  (
k  +  M )  =  ( ( j  -  M )  +  M ) )
134133fveq2d 6195 . . . . . . . 8  |-  ( k  =  ( j  -  M )  ->  (
(coeff `  G ) `  ( k  +  M
) )  =  ( (coeff `  G ) `  ( ( j  -  M )  +  M
) ) )
135 oveq2 6658 . . . . . . . 8  |-  ( k  =  ( j  -  M )  ->  ( A ^ k )  =  ( A ^ (
j  -  M ) ) )
136134, 135oveq12d 6668 . . . . . . 7  |-  ( k  =  ( j  -  M )  ->  (
( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) )  =  ( ( (coeff `  G
) `  ( (
j  -  M )  +  M ) )  x.  ( A ^
( j  -  M
) ) ) )
13733, 126, 34, 132, 136fsumshft 14512 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) )  =  sum_ j  e.  ( (
0  +  M ) ... ( ( (deg
`  G )  -  M )  +  M
) ) ( ( (coeff `  G ) `  ( ( j  -  M )  +  M
) )  x.  ( A ^ ( j  -  M ) ) ) )
1383, 8sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  (deg `  G )  e.  CC )
139138, 108npcand 10396 . . . . . . . . 9  |-  ( ph  ->  ( ( (deg `  G )  -  M
)  +  M )  =  (deg `  G
) )
140109, 139oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( 0  +  M ) ... (
( (deg `  G
)  -  M )  +  M ) )  =  ( M ... (deg `  G ) ) )
141140sumeq1d 14431 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( ( 0  +  M
) ... ( ( (deg
`  G )  -  M )  +  M
) ) ( ( (coeff `  G ) `  ( ( j  -  M )  +  M
) )  x.  ( A ^ ( j  -  M ) ) )  =  sum_ j  e.  ( M ... (deg `  G ) ) ( ( (coeff `  G
) `  ( (
j  -  M )  +  M ) )  x.  ( A ^
( j  -  M
) ) ) )
142 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( j  e.  ( M ... (deg `  G ) )  ->  j  e.  ZZ )
143142adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  j  e.  ZZ )
1443, 143sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  j  e.  CC )
145108adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  M  e.  CC )
146144, 145npcand 10396 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( j  -  M )  +  M )  =  j )
147146fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( (coeff `  G ) `  (
( j  -  M
)  +  M ) )  =  ( (coeff `  G ) `  j
) )
148147oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  (
( j  -  M
)  +  M ) )  x.  ( A ^ ( j  -  M ) ) )  =  ( ( (coeff `  G ) `  j
)  x.  ( A ^ ( j  -  M ) ) ) )
149129adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  A  e.  CC )
150 elaa2lem.an0 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =/=  0 )
151150adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  A  =/=  0
)
15233adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  M  e.  ZZ )
153149, 151, 152, 143expsubd 13019 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( A ^
( j  -  M
) )  =  ( ( A ^ j
)  /  ( A ^ M ) ) )
154153oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  j
)  x.  ( A ^ ( j  -  M ) ) )  =  ( ( (coeff `  G ) `  j
)  x.  ( ( A ^ j )  /  ( A ^ M ) ) ) )
15586adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  (coeff `  G
) : NN0 --> CC )
156 0red 10041 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  0  e.  RR )
15740adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  M  e.  RR )
158143zred 11482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  j  e.  RR )
15932nn0ge0d 11354 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  <_  M )
160159adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  0  <_  M
)
161 elfzle1 12344 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( M ... (deg `  G ) )  ->  M  <_  j
)
162161adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  M  <_  j
)
163156, 157, 158, 160, 162letrd 10194 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  0  <_  j
)
164143, 163jca 554 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( j  e.  ZZ  /\  0  <_ 
j ) )
165 elnn0z 11390 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  <->  ( j  e.  ZZ  /\  0  <_ 
j ) )
166164, 165sylibr 224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  j  e.  NN0 )
167155, 166ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( (coeff `  G ) `  j
)  e.  CC )
168149, 166expcld 13008 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( A ^
j )  e.  CC )
169129, 32expcld 13008 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ^ M
)  e.  CC )
170169adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( A ^ M )  e.  CC )
171149, 151, 152expne0d 13014 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( A ^ M )  =/=  0
)
172167, 168, 170, 171divassd 10836 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( ( (coeff `  G ) `  j )  x.  ( A ^ j ) )  /  ( A ^ M ) )  =  ( ( (coeff `  G ) `  j
)  x.  ( ( A ^ j )  /  ( A ^ M ) ) ) )
173172eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  j
)  x.  ( ( A ^ j )  /  ( A ^ M ) ) )  =  ( ( ( (coeff `  G ) `  j )  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
174154, 173eqtr2d 2657 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( ( (coeff `  G ) `  j )  x.  ( A ^ j ) )  /  ( A ^ M ) )  =  ( ( (coeff `  G ) `  j
)  x.  ( A ^ ( j  -  M ) ) ) )
175148, 174eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  (
( j  -  M
)  +  M ) )  x.  ( A ^ ( j  -  M ) ) )  =  ( ( ( (coeff `  G ) `  j )  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
176175sumeq2dv 14433 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M ... (deg `  G ) ) ( ( (coeff `  G
) `  ( (
j  -  M )  +  M ) )  x.  ( A ^
( j  -  M
) ) )  = 
sum_ j  e.  ( M ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
177141, 176eqtrd 2656 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( ( 0  +  M
) ... ( ( (deg
`  G )  -  M )  +  M
) ) ( ( (coeff `  G ) `  ( ( j  -  M )  +  M
) )  x.  ( A ^ ( j  -  M ) ) )  =  sum_ j  e.  ( M ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
17832, 11syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
179 fzss1 12380 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( M ... (deg `  G )
)  C_  ( 0 ... (deg `  G
) ) )
180178, 179syl 17 . . . . . . 7  |-  ( ph  ->  ( M ... (deg `  G ) )  C_  ( 0 ... (deg `  G ) ) )
181167, 168mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  e.  CC )
182181, 170, 171divcld 10801 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M ... (deg `  G ) ) )  ->  ( ( ( (coeff `  G ) `  j )  x.  ( A ^ j ) )  /  ( A ^ M ) )  e.  CC )
18333ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  M  e.  ZZ )
1848ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  (deg `  G
)  e.  ZZ )
185 eldifi 3732 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  -> 
j  e.  ( 0 ... (deg `  G
) ) )
186 elfznn0 12433 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( 0 ... (deg `  G )
)  ->  j  e.  NN0 )
187186nn0zd 11480 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 0 ... (deg `  G )
)  ->  j  e.  ZZ )
188185, 187syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  -> 
j  e.  ZZ )
189188ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  j  e.  ZZ )
190183, 184, 1893jca 1242 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  ( M  e.  ZZ  /\  (deg `  G )  e.  ZZ  /\  j  e.  ZZ ) )
191 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  -.  j  <  M )
19240ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  M  e.  RR )
193189zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  j  e.  RR )
194192, 193lenltd 10183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  ( M  <_ 
j  <->  -.  j  <  M ) )
195191, 194mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  M  <_  j
)
196 elfzle2 12345 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 0 ... (deg `  G )
)  ->  j  <_  (deg
`  G ) )
197185, 196syl 17 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  -> 
j  <_  (deg `  G
) )
198197ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  j  <_  (deg `  G ) )
199190, 195, 198jca32 558 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  ( ( M  e.  ZZ  /\  (deg `  G )  e.  ZZ  /\  j  e.  ZZ )  /\  ( M  <_ 
j  /\  j  <_  (deg
`  G ) ) ) )
200 elfz2 12333 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( M ... (deg `  G ) )  <-> 
( ( M  e.  ZZ  /\  (deg `  G )  e.  ZZ  /\  j  e.  ZZ )  /\  ( M  <_ 
j  /\  j  <_  (deg
`  G ) ) ) )
201199, 200sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  j  e.  ( M ... (deg `  G ) ) )
202 eldifn 3733 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  ->  -.  j  e.  ( M ... (deg `  G
) ) )
203202ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  j  <  M )  ->  -.  j  e.  ( M ... (deg `  G ) ) )
204201, 203condan 835 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
j  <  M )
205204adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  -> 
j  <  M )
2069a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  ->  M  = inf ( {
n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  ) )
20712a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  ->  { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  C_  ( ZZ>=
`  0 ) )
208185, 186syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  -> 
j  e.  NN0 )
209208adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  ( ( 0 ... (deg `  G ) )  \ 
( M ... (deg `  G ) ) )  /\  -.  ( (coeff `  G ) `  j
)  =  0 )  ->  j  e.  NN0 )
210 neqne 2802 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( (coeff `  G
) `  j )  =  0  ->  (
(coeff `  G ) `  j )  =/=  0
)
211210adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  ( ( 0 ... (deg `  G ) )  \ 
( M ... (deg `  G ) ) )  /\  -.  ( (coeff `  G ) `  j
)  =  0 )  ->  ( (coeff `  G ) `  j
)  =/=  0 )
212209, 211jca 554 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( ( 0 ... (deg `  G ) )  \ 
( M ... (deg `  G ) ) )  /\  -.  ( (coeff `  G ) `  j
)  =  0 )  ->  ( j  e. 
NN0  /\  ( (coeff `  G ) `  j
)  =/=  0 ) )
213 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
(coeff `  G ) `  n )  =  ( (coeff `  G ) `  j ) )
214213neeq1d 2853 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  (
( (coeff `  G
) `  n )  =/=  0  <->  ( (coeff `  G ) `  j
)  =/=  0 ) )
215214elrab 3363 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { n  e. 
NN0  |  ( (coeff `  G ) `  n
)  =/=  0 }  <-> 
( j  e.  NN0  /\  ( (coeff `  G
) `  j )  =/=  0 ) )
216212, 215sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( ( 0 ... (deg `  G ) )  \ 
( M ... (deg `  G ) ) )  /\  -.  ( (coeff `  G ) `  j
)  =  0 )  ->  j  e.  {
n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 } )
217216adantll 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  -> 
j  e.  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } )
218 infssuzle 11771 . . . . . . . . . . . . . . 15  |-  ( ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 }  C_  ( ZZ>=
`  0 )  /\  j  e.  { n  e.  NN0  |  ( (coeff `  G ) `  n
)  =/=  0 } )  -> inf ( {
n  e.  NN0  | 
( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  )  <_  j
)
219207, 217, 218syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  -> inf ( { n  e.  NN0  |  ( (coeff `  G
) `  n )  =/=  0 } ,  RR ,  <  )  <_  j
)
220206, 219eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  ->  M  <_  j )
22140ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  ->  M  e.  RR )
222188zred 11482 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ( 0 ... (deg `  G
) )  \  ( M ... (deg `  G
) ) )  -> 
j  e.  RR )
223222ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  -> 
j  e.  RR )
224221, 223lenltd 10183 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  -> 
( M  <_  j  <->  -.  j  <  M ) )
225220, 224mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  /\  -.  ( (coeff `  G
) `  j )  =  0 )  ->  -.  j  <  M )
226205, 225condan 835 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( (coeff `  G
) `  j )  =  0 )
227226oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  =  ( 0  x.  ( A ^ j
) ) )
228129adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  ->  A  e.  CC )
229208adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
j  e.  NN0 )
230228, 229expcld 13008 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( A ^ j
)  e.  CC )
231230mul02d 10234 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( 0  x.  ( A ^ j ) )  =  0 )
232227, 231eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  =  0 )
233232oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) )  =  ( 0  /  ( A ^ M ) ) )
234129, 150, 33expne0d 13014 . . . . . . . . . 10  |-  ( ph  ->  ( A ^ M
)  =/=  0 )
235169, 234div0d 10800 . . . . . . . . 9  |-  ( ph  ->  ( 0  /  ( A ^ M ) )  =  0 )
236235adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( 0  /  ( A ^ M ) )  =  0 )
237233, 236eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ( 0 ... (deg `  G )
)  \  ( M ... (deg `  G )
) ) )  -> 
( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) )  =  0 )
238 fzfid 12772 . . . . . . 7  |-  ( ph  ->  ( 0 ... (deg `  G ) )  e. 
Fin )
239180, 182, 237, 238fsumss 14456 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) )  = 
sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
240137, 177, 2393eqtrd 2660 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) )  =  sum_ j  e.  ( 0 ... (deg `  G
) ) ( ( ( (coeff `  G
) `  j )  x.  ( A ^ j
) )  /  ( A ^ M ) ) )
24189, 55syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( (coeff `  G ) `  (
k  +  M ) )  e.  ZZ )
24256fvmpt2 6291 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  ( (coeff `  G ) `  ( k  +  M
) )  e.  ZZ )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
24389, 241, 242syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
244243adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  z  =  A )  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( I `  k )  =  ( (coeff `  G ) `  ( k  +  M
) ) )
245 oveq1 6657 . . . . . . . . 9  |-  ( z  =  A  ->  (
z ^ k )  =  ( A ^
k ) )
246245ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  z  =  A )  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( z ^
k )  =  ( A ^ k ) )
247244, 246oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  z  =  A )  /\  k  e.  ( 0 ... (
(deg `  G )  -  M ) ) )  ->  ( ( I `
 k )  x.  ( z ^ k
) )  =  ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) ) )
248247sumeq2dv 14433 . . . . . 6  |-  ( (
ph  /\  z  =  A )  ->  sum_ k  e.  ( 0 ... (
(deg `  G )  -  M ) ) ( ( I `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) ) )
249 fzfid 12772 . . . . . . 7  |-  ( ph  ->  ( 0 ... (
(deg `  G )  -  M ) )  e. 
Fin )
250249, 132fsumcl 14464 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( (deg
`  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) )  e.  CC )
2512, 248, 129, 250fvmptd 6288 . . . . 5  |-  ( ph  ->  ( F `  A
)  =  sum_ k  e.  ( 0 ... (
(deg `  G )  -  M ) ) ( ( (coeff `  G
) `  ( k  +  M ) )  x.  ( A ^ k
) ) )
25217, 16coeid2 23995 . . . . . . . 8  |-  ( ( G  e.  (Poly `  ZZ )  /\  A  e.  CC )  ->  ( G `  A )  =  sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( (coeff `  G
) `  j )  x.  ( A ^ j
) ) )
2535, 129, 252syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( G `  A
)  =  sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( (coeff `  G
) `  j )  x.  ( A ^ j
) ) )
254253oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( G `  A )  /  ( A ^ M ) )  =  ( sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( (coeff `  G
) `  j )  x.  ( A ^ j
) )  /  ( A ^ M ) ) )
25586adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  (coeff `  G
) : NN0 --> CC )
256186adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  j  e.  NN0 )
257255, 256ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  ( (coeff `  G ) `  j
)  e.  CC )
258129adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  A  e.  CC )
259258, 256expcld 13008 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  ( A ^
j )  e.  CC )
260257, 259mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... (deg `  G ) ) )  ->  ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  e.  CC )
261238, 169, 260, 234fsumdivc 14518 . . . . . 6  |-  ( ph  ->  ( sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( (coeff `  G
) `  j )  x.  ( A ^ j
) )  /  ( A ^ M ) )  =  sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
262254, 261eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( G `  A )  /  ( A ^ M ) )  =  sum_ j  e.  ( 0 ... (deg `  G ) ) ( ( ( (coeff `  G ) `  j
)  x.  ( A ^ j ) )  /  ( A ^ M ) ) )
263240, 251, 2623eqtr4d 2666 . . . 4  |-  ( ph  ->  ( F `  A
)  =  ( ( G `  A )  /  ( A ^ M ) ) )
264 elaa2lem.ga . . . . 5  |-  ( ph  ->  ( G `  A
)  =  0 )
265264oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( G `  A )  /  ( A ^ M ) )  =  ( 0  / 
( A ^ M
) ) )
266263, 265, 2353eqtrd 2660 . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
267125, 266jca 554 . 2  |-  ( ph  ->  ( ( (coeff `  F ) `  0
)  =/=  0  /\  ( F `  A
)  =  0 ) )
268 fveq2 6191 . . . . . 6  |-  ( f  =  F  ->  (coeff `  f )  =  (coeff `  F ) )
269268fveq1d 6193 . . . . 5  |-  ( f  =  F  ->  (
(coeff `  f ) `  0 )  =  ( (coeff `  F
) `  0 )
)
270269neeq1d 2853 . . . 4  |-  ( f  =  F  ->  (
( (coeff `  f
) `  0 )  =/=  0  <->  ( (coeff `  F ) `  0
)  =/=  0 ) )
271 fveq1 6190 . . . . 5  |-  ( f  =  F  ->  (
f `  A )  =  ( F `  A ) )
272271eqeq1d 2624 . . . 4  |-  ( f  =  F  ->  (
( f `  A
)  =  0  <->  ( F `  A )  =  0 ) )
273270, 272anbi12d 747 . . 3  |-  ( f  =  F  ->  (
( ( (coeff `  f ) `  0
)  =/=  0  /\  ( f `  A
)  =  0 )  <-> 
( ( (coeff `  F ) `  0
)  =/=  0  /\  ( F `  A
)  =  0 ) ) )
274273rspcev 3309 . 2  |-  ( ( F  e.  (Poly `  ZZ )  /\  (
( (coeff `  F
) `  0 )  =/=  0  /\  ( F `  A )  =  0 ) )  ->  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
27560, 267, 274syl2anc 693 1  |-  ( ph  ->  E. f  e.  (Poly `  ZZ ) ( ( (coeff `  f ) `  0 )  =/=  0  /\  ( f `
 A )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943   AAcaa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by:  elaa2  40451
  Copyright terms: Public domain W3C validator