Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem1 Structured version   Visualization version   Unicode version

Theorem prmdvdsfmtnof1lem1 41496
Description: Lemma 1 for prmdvdsfmtnof1 41499. (Contributed by AV, 3-Aug-2021.)
Hypotheses
Ref Expression
prmdvdsfmtnof1lem1.i  |-  I  = inf ( { p  e. 
Prime  |  p  ||  F } ,  RR ,  <  )
prmdvdsfmtnof1lem1.j  |-  J  = inf ( { p  e. 
Prime  |  p  ||  G } ,  RR ,  <  )
Assertion
Ref Expression
prmdvdsfmtnof1lem1  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  ( I  =  J  ->  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G
) ) )
Distinct variable groups:    F, p    G, p
Allowed substitution hints:    I( p)    J( p)

Proof of Theorem prmdvdsfmtnof1lem1
StepHypRef Expression
1 ltso 10118 . . . 4  |-  <  Or  RR
21a1i 11 . . 3  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  <  Or  RR )
3 eluz2nn 11726 . . . . 5  |-  ( F  e.  ( ZZ>= `  2
)  ->  F  e.  NN )
43adantr 481 . . . 4  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  F  e.  NN )
5 prmdvdsfi 24833 . . . 4  |-  ( F  e.  NN  ->  { p  e.  Prime  |  p  ||  F }  e.  Fin )
64, 5syl 17 . . 3  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  F }  e.  Fin )
7 exprmfct 15416 . . . . 5  |-  ( F  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  F
)
87adantr 481 . . . 4  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  E. p  e.  Prime  p  ||  F
)
9 rabn0 3958 . . . 4  |-  ( { p  e.  Prime  |  p 
||  F }  =/=  (/)  <->  E. p  e.  Prime  p  ||  F )
108, 9sylibr 224 . . 3  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  F }  =/=  (/) )
11 ssrab2 3687 . . . . 5  |-  { p  e.  Prime  |  p  ||  F }  C_  Prime
12 prmssnn 15390 . . . . . 6  |-  Prime  C_  NN
13 nnssre 11024 . . . . . 6  |-  NN  C_  RR
1412, 13sstri 3612 . . . . 5  |-  Prime  C_  RR
1511, 14sstri 3612 . . . 4  |-  { p  e.  Prime  |  p  ||  F }  C_  RR
1615a1i 11 . . 3  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  F }  C_  RR )
17 fiinfcl 8407 . . 3  |-  ( (  <  Or  RR  /\  ( { p  e.  Prime  |  p  ||  F }  e.  Fin  /\  { p  e.  Prime  |  p  ||  F }  =/=  (/)  /\  {
p  e.  Prime  |  p 
||  F }  C_  RR ) )  -> inf ( { p  e.  Prime  |  p 
||  F } ,  RR ,  <  )  e. 
{ p  e.  Prime  |  p  ||  F }
)
182, 6, 10, 16, 17syl13anc 1328 . 2  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  -> inf ( {
p  e.  Prime  |  p 
||  F } ,  RR ,  <  )  e. 
{ p  e.  Prime  |  p  ||  F }
)
19 prmdvdsfmtnof1lem1.i . . . 4  |-  I  = inf ( { p  e. 
Prime  |  p  ||  F } ,  RR ,  <  )
2019eleq1i 2692 . . 3  |-  ( I  e.  { p  e. 
Prime  |  p  ||  F } 
<-> inf ( { p  e. 
Prime  |  p  ||  F } ,  RR ,  <  )  e.  { p  e.  Prime  |  p  ||  F } )
21 eluz2nn 11726 . . . . . . 7  |-  ( G  e.  ( ZZ>= `  2
)  ->  G  e.  NN )
2221adantl 482 . . . . . 6  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  G  e.  NN )
23 prmdvdsfi 24833 . . . . . 6  |-  ( G  e.  NN  ->  { p  e.  Prime  |  p  ||  G }  e.  Fin )
2422, 23syl 17 . . . . 5  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  G }  e.  Fin )
25 exprmfct 15416 . . . . . . 7  |-  ( G  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  G
)
2625adantl 482 . . . . . 6  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  E. p  e.  Prime  p  ||  G
)
27 rabn0 3958 . . . . . 6  |-  ( { p  e.  Prime  |  p 
||  G }  =/=  (/)  <->  E. p  e.  Prime  p  ||  G )
2826, 27sylibr 224 . . . . 5  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  G }  =/=  (/) )
29 ssrab2 3687 . . . . . . 7  |-  { p  e.  Prime  |  p  ||  G }  C_  Prime
3029, 14sstri 3612 . . . . . 6  |-  { p  e.  Prime  |  p  ||  G }  C_  RR
3130a1i 11 . . . . 5  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  { p  e.  Prime  |  p  ||  G }  C_  RR )
32 fiinfcl 8407 . . . . 5  |-  ( (  <  Or  RR  /\  ( { p  e.  Prime  |  p  ||  G }  e.  Fin  /\  { p  e.  Prime  |  p  ||  G }  =/=  (/)  /\  {
p  e.  Prime  |  p 
||  G }  C_  RR ) )  -> inf ( { p  e.  Prime  |  p 
||  G } ,  RR ,  <  )  e. 
{ p  e.  Prime  |  p  ||  G }
)
332, 24, 28, 31, 32syl13anc 1328 . . . 4  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  -> inf ( {
p  e.  Prime  |  p 
||  G } ,  RR ,  <  )  e. 
{ p  e.  Prime  |  p  ||  G }
)
34 prmdvdsfmtnof1lem1.j . . . . . 6  |-  J  = inf ( { p  e. 
Prime  |  p  ||  G } ,  RR ,  <  )
3534eleq1i 2692 . . . . 5  |-  ( J  e.  { p  e. 
Prime  |  p  ||  G } 
<-> inf ( { p  e. 
Prime  |  p  ||  G } ,  RR ,  <  )  e.  { p  e.  Prime  |  p  ||  G } )
36 nfrab1 3122 . . . . . . . . . 10  |-  F/_ p { p  e.  Prime  |  p  ||  G }
37 nfcv 2764 . . . . . . . . . 10  |-  F/_ p RR
38 nfcv 2764 . . . . . . . . . 10  |-  F/_ p  <
3936, 37, 38nfinf 8388 . . . . . . . . 9  |-  F/_ pinf ( { p  e.  Prime  |  p  ||  G } ,  RR ,  <  )
4034, 39nfcxfr 2762 . . . . . . . 8  |-  F/_ p J
41 nfcv 2764 . . . . . . . 8  |-  F/_ p Prime
42 nfcv 2764 . . . . . . . . 9  |-  F/_ p  ||
43 nfcv 2764 . . . . . . . . 9  |-  F/_ p G
4440, 42, 43nfbr 4699 . . . . . . . 8  |-  F/ p  J  ||  G
45 breq1 4656 . . . . . . . 8  |-  ( p  =  J  ->  (
p  ||  G  <->  J  ||  G
) )
4640, 41, 44, 45elrabf 3360 . . . . . . 7  |-  ( J  e.  { p  e. 
Prime  |  p  ||  G } 
<->  ( J  e.  Prime  /\  J  ||  G ) )
47 nfrab1 3122 . . . . . . . . . . 11  |-  F/_ p { p  e.  Prime  |  p  ||  F }
4847, 37, 38nfinf 8388 . . . . . . . . . 10  |-  F/_ pinf ( { p  e.  Prime  |  p  ||  F } ,  RR ,  <  )
4919, 48nfcxfr 2762 . . . . . . . . 9  |-  F/_ p I
50 nfcv 2764 . . . . . . . . . 10  |-  F/_ p F
5149, 42, 50nfbr 4699 . . . . . . . . 9  |-  F/ p  I  ||  F
52 breq1 4656 . . . . . . . . 9  |-  ( p  =  I  ->  (
p  ||  F  <->  I  ||  F
) )
5349, 41, 51, 52elrabf 3360 . . . . . . . 8  |-  ( I  e.  { p  e. 
Prime  |  p  ||  F } 
<->  ( I  e.  Prime  /\  I  ||  F ) )
54 simp2l 1087 . . . . . . . . . 10  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  I  e.  Prime )
55 simp2r 1088 . . . . . . . . . 10  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  I  ||  F )
56 simp1r 1086 . . . . . . . . . . 11  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  J  ||  G )
57 breq1 4656 . . . . . . . . . . . 12  |-  ( I  =  J  ->  (
I  ||  G  <->  J  ||  G
) )
58573ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  (
I  ||  G  <->  J  ||  G
) )
5956, 58mpbird 247 . . . . . . . . . 10  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  I  ||  G )
6054, 55, 593jca 1242 . . . . . . . . 9  |-  ( ( ( J  e.  Prime  /\  J  ||  G )  /\  ( I  e. 
Prime  /\  I  ||  F
)  /\  I  =  J )  ->  (
I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) )
61603exp 1264 . . . . . . . 8  |-  ( ( J  e.  Prime  /\  J  ||  G )  ->  (
( I  e.  Prime  /\  I  ||  F )  ->  ( I  =  J  ->  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) ) ) )
6253, 61syl5bi 232 . . . . . . 7  |-  ( ( J  e.  Prime  /\  J  ||  G )  ->  (
I  e.  { p  e.  Prime  |  p  ||  F }  ->  ( I  =  J  ->  (
I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) ) ) )
6346, 62sylbi 207 . . . . . 6  |-  ( J  e.  { p  e. 
Prime  |  p  ||  G }  ->  ( I  e. 
{ p  e.  Prime  |  p  ||  F }  ->  ( I  =  J  ->  ( I  e. 
Prime  /\  I  ||  F  /\  I  ||  G ) ) ) )
6463a1i 11 . . . . 5  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  ( J  e.  { p  e.  Prime  |  p  ||  G }  ->  ( I  e.  {
p  e.  Prime  |  p 
||  F }  ->  ( I  =  J  -> 
( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) ) ) ) )
6535, 64syl5bir 233 . . . 4  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  (inf ( { p  e.  Prime  |  p  ||  G } ,  RR ,  <  )  e.  { p  e.  Prime  |  p  ||  G }  ->  ( I  e.  {
p  e.  Prime  |  p 
||  F }  ->  ( I  =  J  -> 
( I  e.  Prime  /\  I  ||  F  /\  I  ||  G ) ) ) ) )
6633, 65mpd 15 . . 3  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  ( I  e.  { p  e.  Prime  |  p  ||  F }  ->  ( I  =  J  ->  ( I  e. 
Prime  /\  I  ||  F  /\  I  ||  G ) ) ) )
6720, 66syl5bir 233 . 2  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  (inf ( { p  e.  Prime  |  p  ||  F } ,  RR ,  <  )  e.  { p  e.  Prime  |  p  ||  F }  ->  ( I  =  J  ->  ( I  e. 
Prime  /\  I  ||  F  /\  I  ||  G ) ) ) )
6818, 67mpd 15 1  |-  ( ( F  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )
)  ->  ( I  =  J  ->  ( I  e.  Prime  /\  I  ||  F  /\  I  ||  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   ` cfv 5888   Fincfn 7955  infcinf 8347   RRcr 9935    < clt 10074   NNcn 11020   2c2 11070   ZZ>=cuz 11687    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prmdvdsfmtnof1  41499
  Copyright terms: Public domain W3C validator