| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elunop2 | Structured version Visualization version Unicode version | ||
| Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elunop2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin 28779 |
. . 3
| |
| 2 | elunop 28731 |
. . . 4
| |
| 3 | 2 | simplbi 476 |
. . 3
|
| 4 | unopnorm 28776 |
. . . 4
| |
| 5 | 4 | ralrimiva 2966 |
. . 3
|
| 6 | 1, 3, 5 | 3jca 1242 |
. 2
|
| 7 | eleq1 2689 |
. . 3
| |
| 8 | eleq1 2689 |
. . . . . . 7
| |
| 9 | foeq1 6111 |
. . . . . . 7
| |
| 10 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . 10
|
| 12 | fveq2 6191 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | eqeq12d 2637 |
. . . . . . . . 9
|
| 14 | 13 | cbvralv 3171 |
. . . . . . . 8
|
| 15 | fveq1 6190 |
. . . . . . . . . . 11
| |
| 16 | 15 | fveq2d 6195 |
. . . . . . . . . 10
|
| 17 | 16 | eqeq1d 2624 |
. . . . . . . . 9
|
| 18 | 17 | ralbidv 2986 |
. . . . . . . 8
|
| 19 | 14, 18 | syl5bb 272 |
. . . . . . 7
|
| 20 | 8, 9, 19 | 3anbi123d 1399 |
. . . . . 6
|
| 21 | eleq1 2689 |
. . . . . . 7
| |
| 22 | foeq1 6111 |
. . . . . . 7
| |
| 23 | fveq1 6190 |
. . . . . . . . . 10
| |
| 24 | 23 | fveq2d 6195 |
. . . . . . . . 9
|
| 25 | 24 | eqeq1d 2624 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2986 |
. . . . . . 7
|
| 27 | 21, 22, 26 | 3anbi123d 1399 |
. . . . . 6
|
| 28 | idlnop 28851 |
. . . . . . 7
| |
| 29 | f1oi 6174 |
. . . . . . . 8
| |
| 30 | f1ofo 6144 |
. . . . . . . 8
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . 7
|
| 32 | fvresi 6439 |
. . . . . . . . 9
| |
| 33 | 32 | fveq2d 6195 |
. . . . . . . 8
|
| 34 | 33 | rgen 2922 |
. . . . . . 7
|
| 35 | 28, 31, 34 | 3pm3.2i 1239 |
. . . . . 6
|
| 36 | 20, 27, 35 | elimhyp 4146 |
. . . . 5
|
| 37 | 36 | simp1i 1070 |
. . . 4
|
| 38 | 36 | simp2i 1071 |
. . . 4
|
| 39 | 36 | simp3i 1072 |
. . . 4
|
| 40 | 37, 38, 39 | lnopunii 28871 |
. . 3
|
| 41 | 7, 40 | dedth 4139 |
. 2
|
| 42 | 6, 41 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-hnorm 27825 df-hvsub 27828 df-lnop 28700 df-unop 28702 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |