| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expaddzlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for expaddz 12904. (Contributed by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expaddzlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1085 |
. . . 4
| |
| 2 | simp3 1063 |
. . . 4
| |
| 3 | expcl 12878 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
|
| 5 | simp2r 1088 |
. . . . 5
| |
| 6 | 5 | nnnn0d 11351 |
. . . 4
|
| 7 | expcl 12878 |
. . . 4
| |
| 8 | 1, 6, 7 | syl2anc 693 |
. . 3
|
| 9 | simp1r 1086 |
. . . 4
| |
| 10 | 5 | nnzd 11481 |
. . . 4
|
| 11 | expne0i 12892 |
. . . 4
| |
| 12 | 1, 9, 10, 11 | syl3anc 1326 |
. . 3
|
| 13 | 4, 8, 12 | divrec2d 10805 |
. 2
|
| 14 | simp2l 1087 |
. . . . . . . . . . 11
| |
| 15 | 14 | recnd 10068 |
. . . . . . . . . 10
|
| 16 | 15 | negnegd 10383 |
. . . . . . . . 9
|
| 17 | nnnegz 11380 |
. . . . . . . . . 10
| |
| 18 | 5, 17 | syl 17 |
. . . . . . . . 9
|
| 19 | 16, 18 | eqeltrrd 2702 |
. . . . . . . 8
|
| 20 | 2 | nn0zd 11480 |
. . . . . . . 8
|
| 21 | 19, 20 | zaddcld 11486 |
. . . . . . 7
|
| 22 | expclz 12885 |
. . . . . . 7
| |
| 23 | 1, 9, 21, 22 | syl3anc 1326 |
. . . . . 6
|
| 24 | 23 | adantr 481 |
. . . . 5
|
| 25 | 8 | adantr 481 |
. . . . 5
|
| 26 | 12 | adantr 481 |
. . . . 5
|
| 27 | 24, 25, 26 | divcan4d 10807 |
. . . 4
|
| 28 | 1 | adantr 481 |
. . . . . . 7
|
| 29 | simpr 477 |
. . . . . . 7
| |
| 30 | 6 | adantr 481 |
. . . . . . 7
|
| 31 | expadd 12902 |
. . . . . . 7
| |
| 32 | 28, 29, 30, 31 | syl3anc 1326 |
. . . . . 6
|
| 33 | 21 | zcnd 11483 |
. . . . . . . . . 10
|
| 34 | 33, 15 | negsubd 10398 |
. . . . . . . . 9
|
| 35 | 2 | nn0cnd 11353 |
. . . . . . . . . 10
|
| 36 | 15, 35 | pncan2d 10394 |
. . . . . . . . 9
|
| 37 | 34, 36 | eqtrd 2656 |
. . . . . . . 8
|
| 38 | 37 | adantr 481 |
. . . . . . 7
|
| 39 | 38 | oveq2d 6666 |
. . . . . 6
|
| 40 | 32, 39 | eqtr3d 2658 |
. . . . 5
|
| 41 | 40 | oveq1d 6665 |
. . . 4
|
| 42 | 27, 41 | eqtr3d 2658 |
. . 3
|
| 43 | 1 | adantr 481 |
. . . . 5
|
| 44 | 33 | adantr 481 |
. . . . 5
|
| 45 | simpr 477 |
. . . . 5
| |
| 46 | expneg2 12869 |
. . . . 5
| |
| 47 | 43, 44, 45, 46 | syl3anc 1326 |
. . . 4
|
| 48 | 21 | znegcld 11484 |
. . . . . . . . . 10
|
| 49 | expclz 12885 |
. . . . . . . . . 10
| |
| 50 | 1, 9, 48, 49 | syl3anc 1326 |
. . . . . . . . 9
|
| 51 | 50 | adantr 481 |
. . . . . . . 8
|
| 52 | 4 | adantr 481 |
. . . . . . . 8
|
| 53 | expne0i 12892 |
. . . . . . . . . 10
| |
| 54 | 1, 9, 20, 53 | syl3anc 1326 |
. . . . . . . . 9
|
| 55 | 54 | adantr 481 |
. . . . . . . 8
|
| 56 | 51, 52, 55 | divcan4d 10807 |
. . . . . . 7
|
| 57 | 2 | adantr 481 |
. . . . . . . . . 10
|
| 58 | expadd 12902 |
. . . . . . . . . 10
| |
| 59 | 43, 45, 57, 58 | syl3anc 1326 |
. . . . . . . . 9
|
| 60 | 15, 35 | negdi2d 10406 |
. . . . . . . . . . . . 13
|
| 61 | 60 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 62 | 15 | negcld 10379 |
. . . . . . . . . . . . 13
|
| 63 | 62, 35 | npcand 10396 |
. . . . . . . . . . . 12
|
| 64 | 61, 63 | eqtrd 2656 |
. . . . . . . . . . 11
|
| 65 | 64 | adantr 481 |
. . . . . . . . . 10
|
| 66 | 65 | oveq2d 6666 |
. . . . . . . . 9
|
| 67 | 59, 66 | eqtr3d 2658 |
. . . . . . . 8
|
| 68 | 67 | oveq1d 6665 |
. . . . . . 7
|
| 69 | 56, 68 | eqtr3d 2658 |
. . . . . 6
|
| 70 | 69 | oveq2d 6666 |
. . . . 5
|
| 71 | 8, 4, 12, 54 | recdivd 10818 |
. . . . . 6
|
| 72 | 71 | adantr 481 |
. . . . 5
|
| 73 | 70, 72 | eqtrd 2656 |
. . . 4
|
| 74 | 47, 73 | eqtrd 2656 |
. . 3
|
| 75 | elznn0 11392 |
. . . . 5
| |
| 76 | 75 | simprbi 480 |
. . . 4
|
| 77 | 21, 76 | syl 17 |
. . 3
|
| 78 | 42, 74, 77 | mpjaodan 827 |
. 2
|
| 79 | expneg2 12869 |
. . . 4
| |
| 80 | 1, 15, 6, 79 | syl3anc 1326 |
. . 3
|
| 81 | 80 | oveq1d 6665 |
. 2
|
| 82 | 13, 78, 81 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-exp 12861 |
| This theorem is referenced by: expaddz 12904 |
| Copyright terms: Public domain | W3C validator |