Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expmordi Structured version   Visualization version   Unicode version

Theorem expmordi 37512
Description: Mantissa ordering relationship for exponentiation. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
expmordi  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
)  /\  N  e.  NN )  ->  ( A ^ N )  < 
( B ^ N
) )

Proof of Theorem expmordi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( a  =  1  ->  ( A ^ a )  =  ( A ^ 1 ) )
2 oveq2 6658 . . . . . 6  |-  ( a  =  1  ->  ( B ^ a )  =  ( B ^ 1 ) )
31, 2breq12d 4666 . . . . 5  |-  ( a  =  1  ->  (
( A ^ a
)  <  ( B ^ a )  <->  ( A ^ 1 )  < 
( B ^ 1 ) ) )
43imbi2d 330 . . . 4  |-  ( a  =  1  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
a )  <  ( B ^ a ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
1 )  <  ( B ^ 1 ) ) ) )
5 oveq2 6658 . . . . . 6  |-  ( a  =  b  ->  ( A ^ a )  =  ( A ^ b
) )
6 oveq2 6658 . . . . . 6  |-  ( a  =  b  ->  ( B ^ a )  =  ( B ^ b
) )
75, 6breq12d 4666 . . . . 5  |-  ( a  =  b  ->  (
( A ^ a
)  <  ( B ^ a )  <->  ( A ^ b )  < 
( B ^ b
) ) )
87imbi2d 330 . . . 4  |-  ( a  =  b  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
a )  <  ( B ^ a ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
b )  <  ( B ^ b ) ) ) )
9 oveq2 6658 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( A ^ a )  =  ( A ^ (
b  +  1 ) ) )
10 oveq2 6658 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( B ^ a )  =  ( B ^ (
b  +  1 ) ) )
119, 10breq12d 4666 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( A ^ a
)  <  ( B ^ a )  <->  ( A ^ ( b  +  1 ) )  < 
( B ^ (
b  +  1 ) ) ) )
1211imbi2d 330 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
a )  <  ( B ^ a ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
( b  +  1 ) )  <  ( B ^ ( b  +  1 ) ) ) ) )
13 oveq2 6658 . . . . . 6  |-  ( a  =  N  ->  ( A ^ a )  =  ( A ^ N
) )
14 oveq2 6658 . . . . . 6  |-  ( a  =  N  ->  ( B ^ a )  =  ( B ^ N
) )
1513, 14breq12d 4666 . . . . 5  |-  ( a  =  N  ->  (
( A ^ a
)  <  ( B ^ a )  <->  ( A ^ N )  <  ( B ^ N ) ) )
1615imbi2d 330 . . . 4  |-  ( a  =  N  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
a )  <  ( B ^ a ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^ N )  <  ( B ^ N ) ) ) )
17 recn 10026 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
18 recn 10026 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
19 exp1 12866 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
20 exp1 12866 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
2119, 20breqan12d 4669 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
1 )  <  ( B ^ 1 )  <->  A  <  B ) )
2217, 18, 21syl2an 494 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ^
1 )  <  ( B ^ 1 )  <->  A  <  B ) )
2322biimpar 502 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  ( A ^ 1 )  < 
( B ^ 1 ) )
2423adantrl 752 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A ^ 1 )  < 
( B ^ 1 ) )
25 simp2ll 1128 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  A  e.  RR )
26 nnnn0 11299 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  b  e.  NN0 )
27263ad2ant1 1082 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  b  e.  NN0 )
2825, 27reexpcld 13025 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( A ^
b )  e.  RR )
29 simp2lr 1129 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  B  e.  RR )
3029, 27reexpcld 13025 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( B ^
b )  e.  RR )
3128, 30jca 554 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( ( A ^ b )  e.  RR  /\  ( B ^ b )  e.  RR ) )
32 simp2rl 1130 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  0  <_  A
)
3325, 27, 32expge0d 13026 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  0  <_  ( A ^ b ) )
34 simp3 1063 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( A ^
b )  <  ( B ^ b ) )
3533, 34jca 554 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( 0  <_ 
( A ^ b
)  /\  ( A ^ b )  < 
( B ^ b
) ) )
36 simp2l 1087 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( A  e.  RR  /\  B  e.  RR ) )
37 simp2r 1088 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( 0  <_  A  /\  A  <  B
) )
38 ltmul12a 10879 . . . . . . . 8  |-  ( ( ( ( ( A ^ b )  e.  RR  /\  ( B ^ b )  e.  RR )  /\  (
0  <_  ( A ^ b )  /\  ( A ^ b )  <  ( B ^
b ) ) )  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) ) )  ->  ( ( A ^ b )  x.  A )  <  (
( B ^ b
)  x.  B ) )
3931, 35, 36, 37, 38syl22anc 1327 . . . . . . 7  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( ( A ^ b )  x.  A )  <  (
( B ^ b
)  x.  B ) )
4025recnd 10068 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  A  e.  CC )
4140, 27expp1d 13009 . . . . . . 7  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( A ^
( b  +  1 ) )  =  ( ( A ^ b
)  x.  A ) )
4229recnd 10068 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  B  e.  CC )
4342, 27expp1d 13009 . . . . . . 7  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( B ^
( b  +  1 ) )  =  ( ( B ^ b
)  x.  B ) )
4439, 41, 433brtr4d 4685 . . . . . 6  |-  ( ( b  e.  NN  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( A ^
b )  <  ( B ^ b ) )  ->  ( A ^
( b  +  1 ) )  <  ( B ^ ( b  +  1 ) ) )
45443exp 1264 . . . . 5  |-  ( b  e.  NN  ->  (
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( ( A ^ b )  < 
( B ^ b
)  ->  ( A ^ ( b  +  1 ) )  < 
( B ^ (
b  +  1 ) ) ) ) )
4645a2d 29 . . . 4  |-  ( b  e.  NN  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^
b )  <  ( B ^ b ) )  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  ( A ^ ( b  +  1 ) )  < 
( B ^ (
b  +  1 ) ) ) ) )
474, 8, 12, 16, 24, 46nnind 11038 . . 3  |-  ( N  e.  NN  ->  (
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  ->  ( A ^ N )  <  ( B ^ N ) ) )
4847impcom 446 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  N  e.  NN )  ->  ( A ^ N )  <  ( B ^ N ) )
49483impa 1259 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
)  /\  N  e.  NN )  ->  ( A ^ N )  < 
( B ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  rpexpmord  37513
  Copyright terms: Public domain W3C validator