Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1lem2 Structured version   Visualization version   Unicode version

Theorem fmul01lt1lem2 39817
Description: Given a finite multiplication of values betweeen 0 and 1, a value  E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1lem2.1  |-  F/_ i B
fmul01lt1lem2.2  |-  F/ i
ph
fmul01lt1lem2.3  |-  A  =  seq L (  x.  ,  B )
fmul01lt1lem2.4  |-  ( ph  ->  L  e.  ZZ )
fmul01lt1lem2.5  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
fmul01lt1lem2.6  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
fmul01lt1lem2.7  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
fmul01lt1lem2.8  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
fmul01lt1lem2.9  |-  ( ph  ->  E  e.  RR+ )
fmul01lt1lem2.10  |-  ( ph  ->  J  e.  ( L ... M ) )
fmul01lt1lem2.11  |-  ( ph  ->  ( B `  J
)  <  E )
Assertion
Ref Expression
fmul01lt1lem2  |-  ( ph  ->  ( A `  M
)  <  E )
Distinct variable groups:    i, J    i, L    i, M
Allowed substitution hints:    ph( i)    A( i)    B( i)    E( i)

Proof of Theorem fmul01lt1lem2
Dummy variables  a 
b  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01lt1lem2.1 . . 3  |-  F/_ i B
2 fmul01lt1lem2.2 . . . 4  |-  F/ i
ph
3 nfv 1843 . . . 4  |-  F/ i  J  =  L
42, 3nfan 1828 . . 3  |-  F/ i ( ph  /\  J  =  L )
5 fmul01lt1lem2.3 . . 3  |-  A  =  seq L (  x.  ,  B )
6 fmul01lt1lem2.4 . . . 4  |-  ( ph  ->  L  e.  ZZ )
76adantr 481 . . 3  |-  ( (
ph  /\  J  =  L )  ->  L  e.  ZZ )
8 fmul01lt1lem2.5 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  L ) )
98adantr 481 . . 3  |-  ( (
ph  /\  J  =  L )  ->  M  e.  ( ZZ>= `  L )
)
10 fmul01lt1lem2.6 . . . 4  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
1110adantlr 751 . . 3  |-  ( ( ( ph  /\  J  =  L )  /\  i  e.  ( L ... M
) )  ->  ( B `  i )  e.  RR )
12 fmul01lt1lem2.7 . . . 4  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i ) )
1312adantlr 751 . . 3  |-  ( ( ( ph  /\  J  =  L )  /\  i  e.  ( L ... M
) )  ->  0  <_  ( B `  i
) )
14 fmul01lt1lem2.8 . . . 4  |-  ( (
ph  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
1514adantlr 751 . . 3  |-  ( ( ( ph  /\  J  =  L )  /\  i  e.  ( L ... M
) )  ->  ( B `  i )  <_  1 )
16 fmul01lt1lem2.9 . . . 4  |-  ( ph  ->  E  e.  RR+ )
1716adantr 481 . . 3  |-  ( (
ph  /\  J  =  L )  ->  E  e.  RR+ )
18 simpr 477 . . . . 5  |-  ( (
ph  /\  J  =  L )  ->  J  =  L )
1918fveq2d 6195 . . . 4  |-  ( (
ph  /\  J  =  L )  ->  ( B `  J )  =  ( B `  L ) )
20 fmul01lt1lem2.11 . . . . 5  |-  ( ph  ->  ( B `  J
)  <  E )
2120adantr 481 . . . 4  |-  ( (
ph  /\  J  =  L )  ->  ( B `  J )  <  E )
2219, 21eqbrtrrd 4677 . . 3  |-  ( (
ph  /\  J  =  L )  ->  ( B `  L )  <  E )
231, 4, 5, 7, 9, 11, 13, 15, 17, 22fmul01lt1lem1 39816 . 2  |-  ( (
ph  /\  J  =  L )  ->  ( A `  M )  <  E )
245fveq1i 6192 . . 3  |-  ( A `
 M )  =  (  seq L (  x.  ,  B ) `
 M )
25 nfv 1843 . . . . . . . . 9  |-  F/ i  a  e.  ( L ... M )
262, 25nfan 1828 . . . . . . . 8  |-  F/ i ( ph  /\  a  e.  ( L ... M
) )
27 nfcv 2764 . . . . . . . . . 10  |-  F/_ i
a
281, 27nffv 6198 . . . . . . . . 9  |-  F/_ i
( B `  a
)
2928nfel1 2779 . . . . . . . 8  |-  F/ i ( B `  a
)  e.  RR
3026, 29nfim 1825 . . . . . . 7  |-  F/ i ( ( ph  /\  a  e.  ( L ... M ) )  -> 
( B `  a
)  e.  RR )
31 eleq1 2689 . . . . . . . . 9  |-  ( i  =  a  ->  (
i  e.  ( L ... M )  <->  a  e.  ( L ... M ) ) )
3231anbi2d 740 . . . . . . . 8  |-  ( i  =  a  ->  (
( ph  /\  i  e.  ( L ... M
) )  <->  ( ph  /\  a  e.  ( L ... M ) ) ) )
33 fveq2 6191 . . . . . . . . 9  |-  ( i  =  a  ->  ( B `  i )  =  ( B `  a ) )
3433eleq1d 2686 . . . . . . . 8  |-  ( i  =  a  ->  (
( B `  i
)  e.  RR  <->  ( B `  a )  e.  RR ) )
3532, 34imbi12d 334 . . . . . . 7  |-  ( i  =  a  ->  (
( ( ph  /\  i  e.  ( L ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  a  e.  ( L ... M ) )  -> 
( B `  a
)  e.  RR ) ) )
3630, 35, 10chvar 2262 . . . . . 6  |-  ( (
ph  /\  a  e.  ( L ... M ) )  ->  ( B `  a )  e.  RR )
37 remulcl 10021 . . . . . . 7  |-  ( ( a  e.  RR  /\  j  e.  RR )  ->  ( a  x.  j
)  e.  RR )
3837adantl 482 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  j  e.  RR ) )  -> 
( a  x.  j
)  e.  RR )
398, 36, 38seqcl 12821 . . . . 5  |-  ( ph  ->  (  seq L (  x.  ,  B ) `
 M )  e.  RR )
4039adantr 481 . . . 4  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  e.  RR )
41 fmul01lt1lem2.10 . . . . . . 7  |-  ( ph  ->  J  e.  ( L ... M ) )
42 elfzuz3 12339 . . . . . . 7  |-  ( J  e.  ( L ... M )  ->  M  e.  ( ZZ>= `  J )
)
4341, 42syl 17 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  J ) )
44 nfv 1843 . . . . . . . . 9  |-  F/ i  a  e.  ( J ... M )
452, 44nfan 1828 . . . . . . . 8  |-  F/ i ( ph  /\  a  e.  ( J ... M
) )
4645, 29nfim 1825 . . . . . . 7  |-  F/ i ( ( ph  /\  a  e.  ( J ... M ) )  -> 
( B `  a
)  e.  RR )
47 eleq1 2689 . . . . . . . . 9  |-  ( i  =  a  ->  (
i  e.  ( J ... M )  <->  a  e.  ( J ... M ) ) )
4847anbi2d 740 . . . . . . . 8  |-  ( i  =  a  ->  (
( ph  /\  i  e.  ( J ... M
) )  <->  ( ph  /\  a  e.  ( J ... M ) ) ) )
4948, 34imbi12d 334 . . . . . . 7  |-  ( i  =  a  ->  (
( ( ph  /\  i  e.  ( J ... M ) )  -> 
( B `  i
)  e.  RR )  <-> 
( ( ph  /\  a  e.  ( J ... M ) )  -> 
( B `  a
)  e.  RR ) ) )
506adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  L  e.  ZZ )
51 eluzelz 11697 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  L
)  ->  M  e.  ZZ )
528, 51syl 17 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
5352adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  M  e.  ZZ )
54 elfzelz 12342 . . . . . . . . . . 11  |-  ( i  e.  ( J ... M )  ->  i  e.  ZZ )
5554adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  i  e.  ZZ )
5650, 53, 553jca 1242 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  ( L  e.  ZZ  /\  M  e.  ZZ  /\  i  e.  ZZ ) )
576zred 11482 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  RR )
5857adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  L  e.  RR )
59 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( J  e.  ( L ... M )  ->  J  e.  ZZ )
6041, 59syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  ZZ )
6160zred 11482 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  RR )
6261adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  J  e.  RR )
6354zred 11482 . . . . . . . . . . . 12  |-  ( i  e.  ( J ... M )  ->  i  e.  RR )
6463adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  i  e.  RR )
65 elfzle1 12344 . . . . . . . . . . . . 13  |-  ( J  e.  ( L ... M )  ->  L  <_  J )
6641, 65syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  L  <_  J )
6766adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  L  <_  J )
68 elfzle1 12344 . . . . . . . . . . . 12  |-  ( i  e.  ( J ... M )  ->  J  <_  i )
6968adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  J  <_  i )
7058, 62, 64, 67, 69letrd 10194 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  L  <_  i )
71 elfzle2 12345 . . . . . . . . . . 11  |-  ( i  e.  ( J ... M )  ->  i  <_  M )
7271adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  i  <_  M )
7370, 72jca 554 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  ( L  <_  i  /\  i  <_  M ) )
74 elfz2 12333 . . . . . . . . 9  |-  ( i  e.  ( L ... M )  <->  ( ( L  e.  ZZ  /\  M  e.  ZZ  /\  i  e.  ZZ )  /\  ( L  <_  i  /\  i  <_  M ) ) )
7556, 73, 74sylanbrc 698 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  i  e.  ( L ... M ) )
7675, 10syldan 487 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  ( B `  i )  e.  RR )
7746, 49, 76chvar 2262 . . . . . 6  |-  ( (
ph  /\  a  e.  ( J ... M ) )  ->  ( B `  a )  e.  RR )
7843, 77, 38seqcl 12821 . . . . 5  |-  ( ph  ->  (  seq J (  x.  ,  B ) `
 M )  e.  RR )
7978adantr 481 . . . 4  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq J (  x.  ,  B ) `  M
)  e.  RR )
8016rpred 11872 . . . . 5  |-  ( ph  ->  E  e.  RR )
8180adantr 481 . . . 4  |-  ( (
ph  /\  -.  J  =  L )  ->  E  e.  RR )
82 remulcl 10021 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  x.  b
)  e.  RR )
8382adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  J  =  L )  /\  ( a  e.  RR  /\  b  e.  RR ) )  ->  ( a  x.  b )  e.  RR )
84 simp1 1061 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  a  e.  RR )
8584recnd 10068 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  a  e.  CC )
86 simp2 1062 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  b  e.  RR )
8786recnd 10068 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  b  e.  CC )
88 simp3 1063 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  c  e.  RR )
8988recnd 10068 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  c  e.  CC )
9085, 87, 89mulassd 10063 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )  ->  (
( a  x.  b
)  x.  c )  =  ( a  x.  ( b  x.  c
) ) )
9190adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  J  =  L )  /\  ( a  e.  RR  /\  b  e.  RR  /\  c  e.  RR )
)  ->  ( (
a  x.  b )  x.  c )  =  ( a  x.  (
b  x.  c ) ) )
9260zcnd 11483 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  CC )
93 1cnd 10056 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
9492, 93npcand 10396 . . . . . . . . . . 11  |-  ( ph  ->  ( ( J  - 
1 )  +  1 )  =  J )
9594fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( ZZ>= `  ( ( J  -  1 )  +  1 ) )  =  ( ZZ>= `  J
) )
9643, 95eleqtrrd 2704 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  ( ( J  - 
1 )  +  1 ) ) )
9796adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  J  =  L )  ->  M  e.  ( ZZ>= `  ( ( J  -  1 )  +  1 ) ) )
986adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  L  e.  ZZ )
9960adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  J  e.  ZZ )
100 1zzd 11408 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  1  e.  ZZ )
10199, 100zsubcld 11487 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  ( J  -  1 )  e.  ZZ )
102 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  J  =  L )  ->  -.  J  =  L )
103 eqcom 2629 . . . . . . . . . . . 12  |-  ( J  =  L  <->  L  =  J )
104102, 103sylnib 318 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  J  =  L )  ->  -.  L  =  J )
10557, 61leloed 10180 . . . . . . . . . . . . 13  |-  ( ph  ->  ( L  <_  J  <->  ( L  <  J  \/  L  =  J )
) )
10666, 105mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  <  J  \/  L  =  J
) )
107106adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  J  =  L )  ->  ( L  <  J  \/  L  =  J ) )
108 orel2 398 . . . . . . . . . . 11  |-  ( -.  L  =  J  -> 
( ( L  < 
J  \/  L  =  J )  ->  L  <  J ) )
109104, 107, 108sylc 65 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  L  <  J )
110 zltlem1 11430 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  J  e.  ZZ )  ->  ( L  <  J  <->  L  <_  ( J  - 
1 ) ) )
1116, 60, 110syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( L  <  J  <->  L  <_  ( J  - 
1 ) ) )
112111adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  ( L  <  J  <->  L  <_  ( J  -  1 ) ) )
113109, 112mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  L  <_  ( J  -  1 ) )
114 eluz2 11693 . . . . . . . . 9  |-  ( ( J  -  1 )  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  ( J  -  1 )  e.  ZZ  /\  L  <_ 
( J  -  1 ) ) )
11598, 101, 113, 114syl3anbrc 1246 . . . . . . . 8  |-  ( (
ph  /\  -.  J  =  L )  ->  ( J  -  1 )  e.  ( ZZ>= `  L
) )
116 nfv 1843 . . . . . . . . . . . 12  |-  F/ i  -.  J  =  L
1172, 116nfan 1828 . . . . . . . . . . 11  |-  F/ i ( ph  /\  -.  J  =  L )
118117, 25nfan 1828 . . . . . . . . . 10  |-  F/ i ( ( ph  /\  -.  J  =  L
)  /\  a  e.  ( L ... M ) )
119118, 29nfim 1825 . . . . . . . . 9  |-  F/ i ( ( ( ph  /\ 
-.  J  =  L )  /\  a  e.  ( L ... M
) )  ->  ( B `  a )  e.  RR )
12031anbi2d 740 . . . . . . . . . 10  |-  ( i  =  a  ->  (
( ( ph  /\  -.  J  =  L
)  /\  i  e.  ( L ... M ) )  <->  ( ( ph  /\ 
-.  J  =  L )  /\  a  e.  ( L ... M
) ) ) )
121120, 34imbi12d 334 . . . . . . . . 9  |-  ( i  =  a  ->  (
( ( ( ph  /\ 
-.  J  =  L )  /\  i  e.  ( L ... M
) )  ->  ( B `  i )  e.  RR )  <->  ( (
( ph  /\  -.  J  =  L )  /\  a  e.  ( L ... M
) )  ->  ( B `  a )  e.  RR ) ) )
12210adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  e.  RR )
123119, 121, 122chvar 2262 . . . . . . . 8  |-  ( ( ( ph  /\  -.  J  =  L )  /\  a  e.  ( L ... M ) )  ->  ( B `  a )  e.  RR )
12483, 91, 97, 115, 123seqsplit 12834 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  =  ( (  seq L (  x.  ,  B ) `  ( J  -  1
) )  x.  (  seq ( ( J  - 
1 )  +  1 ) (  x.  ,  B ) `  M
) ) )
12594adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  (
( J  -  1 )  +  1 )  =  J )
126125seqeq1d 12807 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  seq ( ( J  - 
1 )  +  1 ) (  x.  ,  B )  =  seq J (  x.  ,  B ) )
127126fveq1d 6193 . . . . . . . 8  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq ( ( J  - 
1 )  +  1 ) (  x.  ,  B ) `  M
)  =  (  seq J (  x.  ,  B ) `  M
) )
128127oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  (
(  seq L (  x.  ,  B ) `  ( J  -  1
) )  x.  (  seq ( ( J  - 
1 )  +  1 ) (  x.  ,  B ) `  M
) )  =  ( (  seq L (  x.  ,  B ) `
 ( J  - 
1 ) )  x.  (  seq J (  x.  ,  B ) `
 M ) ) )
129124, 128eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  =  ( (  seq L (  x.  ,  B ) `  ( J  -  1
) )  x.  (  seq J (  x.  ,  B ) `  M
) ) )
130 nfv 1843 . . . . . . . . . . 11  |-  F/ i  a  e.  ( L ... ( J  - 
1 ) )
131117, 130nfan 1828 . . . . . . . . . 10  |-  F/ i ( ( ph  /\  -.  J  =  L
)  /\  a  e.  ( L ... ( J  -  1 ) ) )
132131, 29nfim 1825 . . . . . . . . 9  |-  F/ i ( ( ( ph  /\ 
-.  J  =  L )  /\  a  e.  ( L ... ( J  -  1 ) ) )  ->  ( B `  a )  e.  RR )
133 eleq1 2689 . . . . . . . . . . 11  |-  ( i  =  a  ->  (
i  e.  ( L ... ( J  - 
1 ) )  <->  a  e.  ( L ... ( J  -  1 ) ) ) )
134133anbi2d 740 . . . . . . . . . 10  |-  ( i  =  a  ->  (
( ( ph  /\  -.  J  =  L
)  /\  i  e.  ( L ... ( J  -  1 ) ) )  <->  ( ( ph  /\ 
-.  J  =  L )  /\  a  e.  ( L ... ( J  -  1 ) ) ) ) )
135134, 34imbi12d 334 . . . . . . . . 9  |-  ( i  =  a  ->  (
( ( ( ph  /\ 
-.  J  =  L )  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( B `  i )  e.  RR )  <->  ( (
( ph  /\  -.  J  =  L )  /\  a  e.  ( L ... ( J  -  1 ) ) )  ->  ( B `  a )  e.  RR ) ) )
1366adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  L  e.  ZZ )
13752adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  M  e.  ZZ )
138 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( i  e.  ( L ... ( J  -  1
) )  ->  i  e.  ZZ )
139138adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  e.  ZZ )
140136, 137, 1393jca 1242 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( L  e.  ZZ  /\  M  e.  ZZ  /\  i  e.  ZZ ) )
141 elfzle1 12344 . . . . . . . . . . . . . 14  |-  ( i  e.  ( L ... ( J  -  1
) )  ->  L  <_  i )
142141adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  L  <_  i )
143138zred 11482 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( L ... ( J  -  1
) )  ->  i  e.  RR )
144143adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  e.  RR )
14561adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  J  e.  RR )
14652zred 11482 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  RR )
147146adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  M  e.  RR )
148 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  RR )
14961, 148resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( J  -  1 )  e.  RR )
150149adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( J  -  1 )  e.  RR )
151 elfzle2 12345 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( L ... ( J  -  1
) )  ->  i  <_  ( J  -  1 ) )
152151adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  <_  ( J  -  1 ) )
15361lem1d 10957 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( J  -  1 )  <_  J )
154153adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( J  -  1 )  <_  J )
155144, 150, 145, 152, 154letrd 10194 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  <_  J )
156 elfzle2 12345 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ( L ... M )  ->  J  <_  M )
15741, 156syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  <_  M )
158157adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  J  <_  M )
159144, 145, 147, 155, 158letrd 10194 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  <_  M )
160142, 159jca 554 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( L  <_  i  /\  i  <_  M ) )
161140, 160, 74sylanbrc 698 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  i  e.  ( L ... M ) )
162161, 10syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( L ... ( J  -  1 ) ) )  ->  ( B `  i )  e.  RR )
163162adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( L ... ( J  - 
1 ) ) )  ->  ( B `  i )  e.  RR )
164132, 135, 163chvar 2262 . . . . . . . 8  |-  ( ( ( ph  /\  -.  J  =  L )  /\  a  e.  ( L ... ( J  - 
1 ) ) )  ->  ( B `  a )  e.  RR )
16537adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  J  =  L )  /\  ( a  e.  RR  /\  j  e.  RR ) )  ->  ( a  x.  j )  e.  RR )
166115, 164, 165seqcl 12821 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  ( J  -  1 ) )  e.  RR )
167 1red 10055 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  1  e.  RR )
168 eqid 2622 . . . . . . . . 9  |-  seq J
(  x.  ,  B
)  =  seq J
(  x.  ,  B
)
16943adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  M  e.  ( ZZ>= `  J )
)
170 eluzfz2 12349 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  J
)  ->  M  e.  ( J ... M ) )
17143, 170syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( J ... M ) )
172171adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  M  e.  ( J ... M
) )
17376adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( J ... M ) )  ->  ( B `  i )  e.  RR )
17475, 12syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  0  <_  ( B `  i ) )
175174adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( J ... M ) )  ->  0  <_  ( B `  i )
)
17675, 14syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( J ... M ) )  ->  ( B `  i )  <_  1
)
177176adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( J ... M ) )  ->  ( B `  i )  <_  1
)
1781, 117, 168, 99, 169, 172, 173, 175, 177fmul01 39812 . . . . . . . 8  |-  ( (
ph  /\  -.  J  =  L )  ->  (
0  <_  (  seq J (  x.  ,  B ) `  M
)  /\  (  seq J (  x.  ,  B ) `  M
)  <_  1 ) )
179178simpld 475 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  0  <_  (  seq J (  x.  ,  B ) `
 M ) )
180 eqid 2622 . . . . . . . . 9  |-  seq L
(  x.  ,  B
)  =  seq L
(  x.  ,  B
)
1818adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  M  e.  ( ZZ>= `  L )
)
182 1zzd 11408 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  ZZ )
18360, 182zsubcld 11487 . . . . . . . . . . . 12  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
1846, 52, 1833jca 1242 . . . . . . . . . . 11  |-  ( ph  ->  ( L  e.  ZZ  /\  M  e.  ZZ  /\  ( J  -  1
)  e.  ZZ ) )
185184adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  ( L  e.  ZZ  /\  M  e.  ZZ  /\  ( J  -  1 )  e.  ZZ ) )
186149, 61, 1463jca 1242 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( J  - 
1 )  e.  RR  /\  J  e.  RR  /\  M  e.  RR )
)
187186adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  J  =  L )  ->  (
( J  -  1 )  e.  RR  /\  J  e.  RR  /\  M  e.  RR ) )
18861adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  J  =  L )  ->  J  e.  RR )
189188lem1d 10957 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  J  =  L )  ->  ( J  -  1 )  <_  J )
190157adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  J  =  L )  ->  J  <_  M )
191189, 190jca 554 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  J  =  L )  ->  (
( J  -  1 )  <_  J  /\  J  <_  M ) )
192 letr 10131 . . . . . . . . . . . 12  |-  ( ( ( J  -  1 )  e.  RR  /\  J  e.  RR  /\  M  e.  RR )  ->  (
( ( J  - 
1 )  <_  J  /\  J  <_  M )  ->  ( J  - 
1 )  <_  M
) )
193187, 191, 192sylc 65 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  J  =  L )  ->  ( J  -  1 )  <_  M )
194113, 193jca 554 . . . . . . . . . 10  |-  ( (
ph  /\  -.  J  =  L )  ->  ( L  <_  ( J  - 
1 )  /\  ( J  -  1 )  <_  M ) )
195 elfz2 12333 . . . . . . . . . 10  |-  ( ( J  -  1 )  e.  ( L ... M )  <->  ( ( L  e.  ZZ  /\  M  e.  ZZ  /\  ( J  -  1 )  e.  ZZ )  /\  ( L  <_  ( J  - 
1 )  /\  ( J  -  1 )  <_  M ) ) )
196185, 194, 195sylanbrc 698 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  =  L )  ->  ( J  -  1 )  e.  ( L ... M ) )
19712adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( L ... M ) )  ->  0  <_  ( B `  i )
)
19814adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  J  =  L )  /\  i  e.  ( L ... M ) )  ->  ( B `  i )  <_  1
)
1991, 117, 180, 98, 181, 196, 122, 197, 198fmul01 39812 . . . . . . . 8  |-  ( (
ph  /\  -.  J  =  L )  ->  (
0  <_  (  seq L (  x.  ,  B ) `  ( J  -  1 ) )  /\  (  seq L (  x.  ,  B ) `  ( J  -  1 ) )  <_  1 ) )
200199simprd 479 . . . . . . 7  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  ( J  -  1 ) )  <_  1 )
201166, 167, 79, 179, 200lemul1ad 10963 . . . . . 6  |-  ( (
ph  /\  -.  J  =  L )  ->  (
(  seq L (  x.  ,  B ) `  ( J  -  1
) )  x.  (  seq J (  x.  ,  B ) `  M
) )  <_  (
1  x.  (  seq J (  x.  ,  B ) `  M
) ) )
202129, 201eqbrtrd 4675 . . . . 5  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  <_  ( 1  x.  (  seq J
(  x.  ,  B
) `  M )
) )
20379recnd 10068 . . . . . 6  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq J (  x.  ,  B ) `  M
)  e.  CC )
204203mulid2d 10058 . . . . 5  |-  ( (
ph  /\  -.  J  =  L )  ->  (
1  x.  (  seq J (  x.  ,  B ) `  M
) )  =  (  seq J (  x.  ,  B ) `  M ) )
205202, 204breqtrd 4679 . . . 4  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  <_  (  seq J (  x.  ,  B ) `  M
) )
2061, 2, 168, 60, 43, 76, 174, 176, 16, 20fmul01lt1lem1 39816 . . . . 5  |-  ( ph  ->  (  seq J (  x.  ,  B ) `
 M )  < 
E )
207206adantr 481 . . . 4  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq J (  x.  ,  B ) `  M
)  <  E )
20840, 79, 81, 205, 207lelttrd 10195 . . 3  |-  ( (
ph  /\  -.  J  =  L )  ->  (  seq L (  x.  ,  B ) `  M
)  <  E )
20924, 208syl5eqbr 4688 . 2  |-  ( (
ph  /\  -.  J  =  L )  ->  ( A `  M )  <  E )
21023, 209pm2.61dan 832 1  |-  ( ph  ->  ( A `  M
)  <  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  fmul01lt1  39818
  Copyright terms: Public domain W3C validator