MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpnnp Structured version   Visualization version   Unicode version

Theorem genpnnp 9827
Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpnnp.3  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpnnp.4  |-  ( x G y )  =  ( y G x )
Assertion
Ref Expression
genpnnp  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Distinct variable groups:    x, y,
z, A    x, B, y, z, w, v    x, G    y, w, v, G, z    w, A, v   
w, B, v    w, F, v
Allowed substitution hints:    F( x, y, z)

Proof of Theorem genpnnp
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prpssnq 9812 . . . . 5  |-  ( A  e.  P.  ->  A  C. 
Q. )
2 pssnel 4039 . . . . 5  |-  ( A 
C.  Q.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
31, 2syl 17 . . . 4  |-  ( A  e.  P.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
4 prpssnq 9812 . . . . 5  |-  ( B  e.  P.  ->  B  C. 
Q. )
5 pssnel 4039 . . . . 5  |-  ( B 
C.  Q.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
64, 5syl 17 . . . 4  |-  ( B  e.  P.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
73, 6anim12i 590 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w ( w  e.  Q.  /\  -.  w  e.  A
)  /\  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) ) )
8 eeanv 2182 . . 3  |-  ( E. w E. v ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  <->  ( E. w ( w  e. 
Q.  /\  -.  w  e.  A )  /\  E. v ( v  e. 
Q.  /\  -.  v  e.  B ) ) )
97, 8sylibr 224 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. w E. v
( ( w  e. 
Q.  /\  -.  w  e.  A )  /\  (
v  e.  Q.  /\  -.  v  e.  B
) ) )
10 prub 9816 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  f  <Q  w ) )
11 prub 9816 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( -.  v  e.  B  ->  g  <Q 
v ) )
1210, 11im2anan9 880 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
f  <Q  w  /\  g  <Q  v ) ) )
13 elprnq 9813 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  f  e.  A )  ->  f  e.  Q. )
1413anim1i 592 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( f  e. 
Q.  /\  w  e.  Q. ) )
15 elprnq 9813 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  g  e.  B )  ->  g  e.  Q. )
1615anim1i 592 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( g  e. 
Q.  /\  v  e.  Q. ) )
17 ltsonq 9791 . . . . . . . . . . . . . . . . . . . . . . 23  |-  <Q  Or  Q.
18 so2nr 5059 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 
<Q  Or  Q.  /\  (
f  e.  Q.  /\  w  e.  Q. )
)  ->  -.  (
f  <Q  w  /\  w  <Q  f ) )
1917, 18mpan 706 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  -.  ( f  <Q  w  /\  w  <Q  f
) )
2019ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  w  <Q  f ) )
21 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( g  e.  Q.  /\  v  e.  Q. )  ->  v  e.  Q. )
22 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  f  e.  Q. )
2321, 22anim12i 590 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( g  e.  Q.  /\  v  e.  Q. )  /\  ( f  e.  Q.  /\  w  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
2423ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
25 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  w  e. 
_V
26 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  v  e. 
_V
27 genpnnp.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
28 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  f  e. 
_V
29 genpnnp.4 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x G y )  =  ( y G x )
30 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  g  e. 
_V
3125, 26, 27, 28, 29, 30caovord3 6847 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( w  <Q  f  <-> 
g  <Q  v ) )
3231anbi2d 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( ( f 
<Q  w  /\  w  <Q  f )  <->  ( f  <Q  w  /\  g  <Q 
v ) ) )
3324, 32sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  (
( f  <Q  w  /\  w  <Q  f )  <-> 
( f  <Q  w  /\  g  <Q  v ) ) )
3420, 33mtbid 314 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) )
3534ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
w G v )  =  ( f G g )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) ) )
3635con2d 129 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3714, 16, 36syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3812, 37syld 47 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) )
3938an4s 869 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  ( B  e.  P.  /\  g  e.  B ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4039ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  ( B  e. 
P.  /\  g  e.  B ) )  -> 
( ( w  e. 
Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) ) )
4140an4s 869 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  A  /\  g  e.  B
) )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) )
4241ex 450 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4342com24 95 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4443imp32 449 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( f  e.  A  /\  g  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4544ralrimivv 2970 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  A. f  e.  A  A. g  e.  B  -.  (
w G v )  =  ( f G g ) )
46 ralnex 2992 . . . . . . . . . . 11  |-  ( A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
4746ralbii 2980 . . . . . . . . . 10  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
48 ralnex 2992 . . . . . . . . . 10  |-  ( A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
4947, 48bitri 264 . . . . . . . . 9  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
5045, 49sylib 208 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  E. f  e.  A  E. g  e.  B  (
w G v )  =  ( f G g ) )
51 genp.1 . . . . . . . . . 10  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
52 genp.2 . . . . . . . . . 10  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
5351, 52genpelv 9822 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5453adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5550, 54mtbird 315 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  ( w G v )  e.  ( A F B ) )
5655expcom 451 . . . . . 6  |-  ( ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( w G v )  e.  ( A F B ) ) )
5756ancoms 469 . . . . 5  |-  ( ( ( w  e.  Q.  /\  v  e.  Q. )  /\  ( -.  w  e.  A  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5857an4s 869 . . . 4  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5952caovcl 6828 . . . . . 6  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w G v )  e.  Q. )
60 eleq2 2690 . . . . . . . 8  |-  ( ( A F B )  =  Q.  ->  (
( w G v )  e.  ( A F B )  <->  ( w G v )  e. 
Q. ) )
6160biimprcd 240 . . . . . . 7  |-  ( ( w G v )  e.  Q.  ->  (
( A F B )  =  Q.  ->  ( w G v )  e.  ( A F B ) ) )
6261con3d 148 . . . . . 6  |-  ( ( w G v )  e.  Q.  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. )
)
6359, 62syl 17 . . . . 5  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6463ad2ant2r 783 . . . 4  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6558, 64syldc 48 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
6665exlimdvv 1862 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w E. v ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
679, 66mpd 15 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C. wpss 3575   class class class wbr 4653    Or wor 5034  (class class class)co 6650    |-> cmpt2 6652   Q.cnq 9674    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-ltnq 9740  df-np 9803
This theorem is referenced by:  genpcl  9830
  Copyright terms: Public domain W3C validator