MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Structured version   Visualization version   Unicode version

Theorem reclem4pr 9872
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem4pr  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem4pr
Dummy variables  z  w  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
21reclem2pr 9870 . . . . . 6  |-  ( A  e.  P.  ->  B  e.  P. )
3 df-mp 9806 . . . . . . 7  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  { u  |  E. f  e.  y  E. g  e.  w  u  =  ( f  .Q  g ) } )
4 mulclnq 9769 . . . . . . 7  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
53, 4genpelv 9822 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x ) ) )
62, 5mpdan 702 . . . . 5  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x
) ) )
71abeq2i 2735 . . . . . . . . 9  |-  ( x  e.  B  <->  E. y
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
8 ltrelnq 9748 . . . . . . . . . . . . . . 15  |-  <Q  C_  ( Q.  X.  Q. )
98brel 5168 . . . . . . . . . . . . . 14  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
109simprd 479 . . . . . . . . . . . . 13  |-  ( x 
<Q  y  ->  y  e. 
Q. )
11 elprnq 9813 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  z  e.  Q. )
12 ltmnq 9794 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  <->  ( z  .Q  x ) 
<Q  ( z  .Q  y
) ) )
1413biimpd 219 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( z  .Q  x
)  <Q  ( z  .Q  y ) ) )
1514adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( x  <Q  y  ->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
16 recclnq 9788 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
17 prub 9816 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  ( *Q `  y )  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  z  <Q  ( *Q `  y ) ) )
1816, 17sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  z  <Q  ( *Q `  y ) ) )
19 ltmnq 9794 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  Q.  ->  (
z  <Q  ( *Q `  y )  <->  ( y  .Q  z )  <Q  (
y  .Q  ( *Q
`  y ) ) ) )
20 mulcomnq 9775 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  .Q  z )  =  ( z  .Q  y
)
2120a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
y  .Q  z )  =  ( z  .Q  y ) )
22 recidnq 9787 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
2321, 22breq12d 4666 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  Q.  ->  (
( y  .Q  z
)  <Q  ( y  .Q  ( *Q `  y
) )  <->  ( z  .Q  y )  <Q  1Q ) )
2419, 23bitrd 268 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  Q.  ->  (
z  <Q  ( *Q `  y )  <->  ( z  .Q  y )  <Q  1Q ) )
2524adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( z  <Q 
( *Q `  y
)  <->  ( z  .Q  y )  <Q  1Q ) )
2618, 25sylibd 229 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  ( z  .Q  y )  <Q  1Q ) )
2715, 26anim12d 586 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )  ->  (
( z  .Q  x
)  <Q  ( z  .Q  y )  /\  (
z  .Q  y ) 
<Q  1Q ) ) )
28 ltsonq 9791 . . . . . . . . . . . . . . . 16  |-  <Q  Or  Q.
2928, 8sotri 5523 . . . . . . . . . . . . . . 15  |-  ( ( ( z  .Q  x
)  <Q  ( z  .Q  y )  /\  (
z  .Q  y ) 
<Q  1Q )  ->  (
z  .Q  x ) 
<Q  1Q )
3027, 29syl6 35 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )  ->  (
z  .Q  x ) 
<Q  1Q ) )
3130exp4b 632 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( y  e.  Q.  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) ) )
3210, 31syl5 34 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) ) )
3332pm2.43d 53 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) )
3433impd 447 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  (
z  .Q  x ) 
<Q  1Q ) )
3534exlimdv 1861 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  ( z  .Q  x )  <Q  1Q ) )
367, 35syl5bi 232 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  e.  B  ->  ( z  .Q  x
)  <Q  1Q ) )
37 breq1 4656 . . . . . . . . 9  |-  ( w  =  ( z  .Q  x )  ->  (
w  <Q  1Q  <->  ( z  .Q  x )  <Q  1Q ) )
3837biimprcd 240 . . . . . . . 8  |-  ( ( z  .Q  x ) 
<Q  1Q  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) )
3936, 38syl6 35 . . . . . . 7  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  e.  B  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) ) )
4039expimpd 629 . . . . . 6  |-  ( A  e.  P.  ->  (
( z  e.  A  /\  x  e.  B
)  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) ) )
4140rexlimdvv 3037 . . . . 5  |-  ( A  e.  P.  ->  ( E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x )  ->  w  <Q  1Q ) )
426, 41sylbid 230 . . . 4  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  ->  w  <Q  1Q ) )
43 df-1p 9804 . . . . 5  |-  1P  =  { w  |  w  <Q  1Q }
4443abeq2i 2735 . . . 4  |-  ( w  e.  1P  <->  w  <Q  1Q )
4542, 44syl6ibr 242 . . 3  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  ->  w  e.  1P )
)
4645ssrdv 3609 . 2  |-  ( A  e.  P.  ->  ( A  .P.  B )  C_  1P )
471reclem3pr 9871 . 2  |-  ( A  e.  P.  ->  1P  C_  ( A  .P.  B
) )
4846, 47eqssd 3620 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Q.cnq 9674   1Qc1q 9675    .Q cmq 9678   *Qcrq 9679    <Q cltq 9680   P.cnp 9681   1Pc1p 9682    .P. cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-mp 9806
This theorem is referenced by:  recexpr  9873
  Copyright terms: Public domain W3C validator