MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   Unicode version

Theorem gexdvdsi 17998
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
gexid.3  |-  .x.  =  (.g
`  G )
gexid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gexdvdsi  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  -> 
( N  .x.  A
)  =  .0.  )

Proof of Theorem gexdvdsi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  ->  E  ||  N )
2 dvdszrcl 14988 . . . . 5  |-  ( E 
||  N  ->  ( E  e.  ZZ  /\  N  e.  ZZ ) )
3 divides 14985 . . . . 5  |-  ( ( E  e.  ZZ  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  E. x  e.  ZZ  (
x  x.  E )  =  N ) )
42, 3biadan2 674 . . . 4  |-  ( E 
||  N  <->  ( ( E  e.  ZZ  /\  N  e.  ZZ )  /\  E. x  e.  ZZ  (
x  x.  E )  =  N ) )
51, 4sylib 208 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  -> 
( ( E  e.  ZZ  /\  N  e.  ZZ )  /\  E. x  e.  ZZ  (
x  x.  E )  =  N ) )
65simprd 479 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  ->  E. x  e.  ZZ  ( x  x.  E
)  =  N )
7 simpl1 1064 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  G  e.  Grp )
8 simpr 477 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
95simplld 791 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  ->  E  e.  ZZ )
109adantr 481 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  E  e.  ZZ )
11 simpl2 1065 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  A  e.  X )
12 gexcl.1 . . . . . . 7  |-  X  =  ( Base `  G
)
13 gexid.3 . . . . . . 7  |-  .x.  =  (.g
`  G )
1412, 13mulgass 17579 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  ZZ  /\  E  e.  ZZ  /\  A  e.  X )
)  ->  ( (
x  x.  E ) 
.x.  A )  =  ( x  .x.  ( E  .x.  A ) ) )
157, 8, 10, 11, 14syl13anc 1328 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( ( x  x.  E )  .x.  A
)  =  ( x 
.x.  ( E  .x.  A ) ) )
16 gexcl.2 . . . . . . . 8  |-  E  =  (gEx `  G )
17 gexid.4 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
1812, 16, 13, 17gexid 17996 . . . . . . 7  |-  ( A  e.  X  ->  ( E  .x.  A )  =  .0.  )
1911, 18syl 17 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( E  .x.  A
)  =  .0.  )
2019oveq2d 6666 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( x  .x.  ( E  .x.  A ) )  =  ( x  .x.  .0.  ) )
2112, 13, 17mulgz 17568 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ZZ )  ->  ( x  .x.  .0.  )  =  .0.  )
22213ad2antl1 1223 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( x  .x.  .0.  )  =  .0.  )
2315, 20, 223eqtrd 2660 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( ( x  x.  E )  .x.  A
)  =  .0.  )
24 oveq1 6657 . . . . 5  |-  ( ( x  x.  E )  =  N  ->  (
( x  x.  E
)  .x.  A )  =  ( N  .x.  A ) )
2524eqeq1d 2624 . . . 4  |-  ( ( x  x.  E )  =  N  ->  (
( ( x  x.  E )  .x.  A
)  =  .0.  <->  ( N  .x.  A )  =  .0.  ) )
2623, 25syl5ibcom 235 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  /\  x  e.  ZZ )  ->  ( ( x  x.  E )  =  N  ->  ( N  .x.  A )  =  .0.  ) )
2726rexlimdva 3031 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  -> 
( E. x  e.  ZZ  ( x  x.  E )  =  N  ->  ( N  .x.  A )  =  .0.  ) )
286, 27mpd 15 1  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  E  ||  N )  -> 
( N  .x.  A
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    x. cmul 9941   ZZcz 11377    || cdvds 14983   Basecbs 15857   0gc0g 16100   Grpcgrp 17422  .gcmg 17540  gExcgex 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-gex 17949
This theorem is referenced by:  gexdvds  17999  gex2abl  18254
  Copyright terms: Public domain W3C validator