MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   Unicode version

Theorem gex2abl 18254
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1  |-  X  =  ( Base `  G
)
gexex.2  |-  E  =  (gEx `  G )
Assertion
Ref Expression
gex2abl  |-  ( ( G  e.  Grp  /\  E  ||  2 )  ->  G  e.  Abel )

Proof of Theorem gex2abl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3  |-  X  =  ( Base `  G
)
21a1i 11 . 2  |-  ( ( G  e.  Grp  /\  E  ||  2 )  ->  X  =  ( Base `  G ) )
3 eqidd 2623 . 2  |-  ( ( G  e.  Grp  /\  E  ||  2 )  -> 
( +g  `  G )  =  ( +g  `  G
) )
4 simpl 473 . 2  |-  ( ( G  e.  Grp  /\  E  ||  2 )  ->  G  e.  Grp )
5 simp1l 1085 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  G  e.  Grp )
6 simp2 1062 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  x  e.  X )
7 simp3 1063 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  y  e.  X )
8 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
91, 8grpass 17431 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  y  e.  X  /\  y  e.  X
) )  ->  (
( x ( +g  `  G ) y ) ( +g  `  G
) y )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) y ) ) )
105, 6, 7, 7, 9syl13anc 1328 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) y )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) y ) ) )
11 eqid 2622 . . . . . . . . . . . 12  |-  (.g `  G
)  =  (.g `  G
)
121, 11, 8mulg2 17550 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
2 (.g `  G ) y )  =  ( y ( +g  `  G
) y ) )
137, 12syl 17 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) y )  =  ( y ( +g  `  G
) y ) )
14 simp1r 1086 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  E  ||  2
)
15 gexex.2 . . . . . . . . . . . 12  |-  E  =  (gEx `  G )
16 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
171, 15, 11, 16gexdvdsi 17998 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  E  ||  2 )  -> 
( 2 (.g `  G
) y )  =  ( 0g `  G
) )
185, 7, 14, 17syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) y )  =  ( 0g
`  G ) )
1913, 18eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( y
( +g  `  G ) y )  =  ( 0g `  G ) )
2019oveq2d 6666 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x
( +g  `  G ) ( y ( +g  `  G ) y ) )  =  ( x ( +g  `  G
) ( 0g `  G ) ) )
211, 8, 16grprid 17453 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( x ( +g  `  G ) ( 0g
`  G ) )  =  x )
225, 6, 21syl2anc 693 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x
( +g  `  G ) ( 0g `  G
) )  =  x )
2310, 20, 223eqtrd 2660 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) y )  =  x )
2423oveq1d 6665 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
( x ( +g  `  G ) y ) ( +g  `  G
) y ) ( +g  `  G ) x )  =  ( x ( +g  `  G
) x ) )
251, 11, 8mulg2 17550 . . . . . . 7  |-  ( x  e.  X  ->  (
2 (.g `  G ) x )  =  ( x ( +g  `  G
) x ) )
266, 25syl 17 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) x )  =  ( x ( +g  `  G
) x ) )
271, 15, 11, 16gexdvdsi 17998 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  2 )  -> 
( 2 (.g `  G
) x )  =  ( 0g `  G
) )
285, 6, 14, 27syl3anc 1326 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) x )  =  ( 0g
`  G ) )
2924, 26, 283eqtr2d 2662 . . . . 5  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
( x ( +g  `  G ) y ) ( +g  `  G
) y ) ( +g  `  G ) x )  =  ( 0g `  G ) )
301, 8grpcl 17430 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x ( +g  `  G ) y )  e.  X )
315, 6, 7, 30syl3anc 1326 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x
( +g  `  G ) y )  e.  X
)
321, 15, 11, 16gexdvdsi 17998 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  X  /\  E  ||  2 )  ->  (
2 (.g `  G ) ( x ( +g  `  G
) y ) )  =  ( 0g `  G ) )
335, 31, 14, 32syl3anc 1326 . . . . 5  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) ( x ( +g  `  G
) y ) )  =  ( 0g `  G ) )
341, 11, 8mulg2 17550 . . . . . 6  |-  ( ( x ( +g  `  G
) y )  e.  X  ->  ( 2 (.g `  G ) ( x ( +g  `  G
) y ) )  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) ( x ( +g  `  G ) y ) ) )
3531, 34syl 17 . . . . 5  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( 2 (.g `  G ) ( x ( +g  `  G
) y ) )  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) ( x ( +g  `  G ) y ) ) )
3629, 33, 353eqtr2d 2662 . . . 4  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
( x ( +g  `  G ) y ) ( +g  `  G
) y ) ( +g  `  G ) x )  =  ( ( x ( +g  `  G ) y ) ( +g  `  G
) ( x ( +g  `  G ) y ) ) )
371, 8grpass 17431 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( x ( +g  `  G ) y )  e.  X  /\  y  e.  X  /\  x  e.  X
) )  ->  (
( ( x ( +g  `  G ) y ) ( +g  `  G ) y ) ( +g  `  G
) x )  =  ( ( x ( +g  `  G ) y ) ( +g  `  G ) ( y ( +g  `  G
) x ) ) )
385, 31, 7, 6, 37syl13anc 1328 . . . 4  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
( x ( +g  `  G ) y ) ( +g  `  G
) y ) ( +g  `  G ) x )  =  ( ( x ( +g  `  G ) y ) ( +g  `  G
) ( y ( +g  `  G ) x ) ) )
3936, 38eqtr3d 2658 . . 3  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) ( x ( +g  `  G ) y ) )  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) ( y ( +g  `  G ) x ) ) )
401, 8grpcl 17430 . . . . 5  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  x  e.  X )  ->  ( y ( +g  `  G ) x )  e.  X )
415, 7, 6, 40syl3anc 1326 . . . 4  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( y
( +g  `  G ) x )  e.  X
)
421, 8grplcan 17477 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( x ( +g  `  G ) y )  e.  X  /\  ( y ( +g  `  G ) x )  e.  X  /\  (
x ( +g  `  G
) y )  e.  X ) )  -> 
( ( ( x ( +g  `  G
) y ) ( +g  `  G ) ( x ( +g  `  G ) y ) )  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) ( y ( +g  `  G ) x ) )  <->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) )
435, 31, 41, 31, 42syl13anc 1328 . . 3  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( (
( x ( +g  `  G ) y ) ( +g  `  G
) ( x ( +g  `  G ) y ) )  =  ( ( x ( +g  `  G ) y ) ( +g  `  G ) ( y ( +g  `  G
) x ) )  <-> 
( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) ) )
4439, 43mpbid 222 . 2  |-  ( ( ( G  e.  Grp  /\  E  ||  2 )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
452, 3, 4, 44isabld 18206 1  |-  ( ( G  e.  Grp  /\  E  ||  2 )  ->  G  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   2c2 11070    || cdvds 14983   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  .gcmg 17540  gExcgex 17945   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-gex 17949  df-cmn 18195  df-abl 18196
This theorem is referenced by:  lt6abl  18296
  Copyright terms: Public domain W3C validator