MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval2 Structured version   Visualization version   Unicode version

Theorem ofrfval2 6915
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1  |-  ( ph  ->  A  e.  V )
offval2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
offval2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
offval2.4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
offval2.5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
Assertion
Ref Expression
ofrfval2  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
Distinct variable groups:    x, A    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)    V( x)    W( x)    X( x)

Proof of Theorem ofrfval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
21ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  W )
3 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 6020 . . . . 5  |-  ( A. x  e.  A  B  e.  W  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 17 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 offval2.4 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5981 . . . 4  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 247 . . 3  |-  ( ph  ->  F  Fn  A )
9 offval2.3 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
109ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  A  C  e.  X )
11 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1211fnmpt 6020 . . . . 5  |-  ( A. x  e.  A  C  e.  X  ->  ( x  e.  A  |->  C )  Fn  A )
1310, 12syl 17 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  Fn  A
)
14 offval2.5 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
1514fneq1d 5981 . . . 4  |-  ( ph  ->  ( G  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
1613, 15mpbird 247 . . 3  |-  ( ph  ->  G  Fn  A )
17 offval2.1 . . 3  |-  ( ph  ->  A  e.  V )
18 inidm 3822 . . 3  |-  ( A  i^i  A )  =  A
196adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  F  =  ( x  e.  A  |->  B ) )
2019fveq1d 6193 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( ( x  e.  A  |->  B ) `
 y ) )
2114adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  G  =  ( x  e.  A  |->  C ) )
2221fveq1d 6193 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( ( x  e.  A  |->  C ) `
 y ) )
238, 16, 17, 17, 18, 20, 22ofrfval 6905 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. y  e.  A  ( (
x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `
 y ) ) )
24 nffvmpt1 6199 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
25 nfcv 2764 . . . . 5  |-  F/_ x R
26 nffvmpt1 6199 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
2724, 25, 26nfbr 4699 . . . 4  |-  F/ x
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
)
28 nfv 1843 . . . 4  |-  F/ y ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
)
29 fveq2 6191 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
30 fveq2 6191 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  C ) `  y
)  =  ( ( x  e.  A  |->  C ) `  x ) )
3129, 30breq12d 4666 . . . 4  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
)  <->  ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) ) )
3227, 28, 31cbvral 3167 . . 3  |-  ( A. y  e.  A  (
( x  e.  A  |->  B ) `  y
) R ( ( x  e.  A  |->  C ) `  y )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) )
33 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
343fvmpt2 6291 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  W )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3533, 1, 34syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3611fvmpt2 6291 . . . . . 6  |-  ( ( x  e.  A  /\  C  e.  X )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
3733, 9, 36syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
3835, 37breq12d 4666 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
)  <->  B R C ) )
3938ralbidva 2985 . . 3  |-  ( ph  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x )  <->  A. x  e.  A  B R C ) )
4032, 39syl5bb 272 . 2  |-  ( ph  ->  ( A. y  e.  A  ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y )  <->  A. x  e.  A  B R C ) )
4123, 40bitrd 268 1  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888    oRcofr 6896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ofr 6898
This theorem is referenced by:  gsumbagdiaglem  19375  mplmonmul  19464  coe1mul2lem1  19637  itg2const  23507  itg2const2  23508  itg2uba  23510  itg2mulclem  23513  itg2splitlem  23515  itg2split  23516  itg2monolem1  23517  itg2gt0  23527  itg2cnlem1  23528  itg2cnlem2  23529  iblss  23571  i1fibl  23574  itgitg1  23575  itgle  23576  ibladdlem  23586  iblabs  23595  iblabsr  23596  iblmulc2  23597  bddmulibl  23605  itg2addnclem  33461  itg2addnclem3  33463  itg2addnc  33464  itg2gt0cn  33465  ibladdnclem  33466  iblabsnc  33474  iblmulc2nc  33475  bddiblnc  33480  ftc1anclem4  33488  ftc1anclem5  33489  ftc1anclem6  33490  ftc1anclem7  33491  ftc1anclem8  33492  ftc1anc  33493
  Copyright terms: Public domain W3C validator