MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   Unicode version

Theorem psrass1lem 19377
Description: A group sum commutation used by psrass1 19405. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
gsumbagdiag.i  |-  ( ph  ->  I  e.  V )
gsumbagdiag.f  |-  ( ph  ->  F  e.  D )
gsumbagdiag.b  |-  B  =  ( Base `  G
)
gsumbagdiag.g  |-  ( ph  ->  G  e. CMnd )
gsumbagdiag.x  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
psrass1lem.y  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
Assertion
Ref Expression
psrass1lem  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Distinct variable groups:    f, j,
k, n, x, y, F    f, G, j, k, n, x, y   
n, V, x, y   
f, I, n, x, y    ph, j, k    S, j, k, n, x    B, j, k    D, j, k, n, x, y    f, X, n, x, y    f, Y, k, x, y
Allowed substitution hints:    ph( x, y, f, n)    B( x, y, f, n)    D( f)    S( y, f)    I( j, k)    V( f, j, k)    X( j, k)    Y( j, n)

Proof of Theorem psrass1lem
Dummy variables  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 psrbagconf1o.1 . . . 4  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
3 gsumbagdiag.i . . . 4  |-  ( ph  ->  I  e.  V )
4 gsumbagdiag.f . . . 4  |-  ( ph  ->  F  e.  D )
5 gsumbagdiag.b . . . 4  |-  B  =  ( Base `  G
)
6 gsumbagdiag.g . . . 4  |-  ( ph  ->  G  e. CMnd )
71, 2, 3, 4gsumbagdiaglem 19375 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )
8 gsumbagdiag.x . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
98anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  X  e.  B )
10 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )
119, 10fmptd 6385 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
123adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  I  e.  V )
13 ssrab2 3687 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  oR  <_  F }  C_  D
142, 13eqsstri 3635 . . . . . . . . . . . . 13  |-  S  C_  D
154adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  F  e.  D )
16 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  j  e.  S )
171, 2psrbagconcl 19373 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  F  e.  D  /\  j  e.  S )  ->  ( F  oF  -  j )  e.  S )
1812, 15, 16, 17syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  S )
1914, 18sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  D )
20 eqid 2622 . . . . . . . . . . . . 13  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
211, 20psrbagconf1o 19374 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
2212, 19, 21syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
23 f1of 6137 . . . . . . . . . . 11  |-  ( ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  ->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
2422, 23syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
25 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  /\  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  -> 
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
2611, 24, 25syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) ) : { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } --> B )
2712adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  I  e.  V )
2815adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  e.  D )
291psrbagf 19365 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F : I --> NN0 )
3027, 28, 29syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F :
I --> NN0 )
3130ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( F `  z
)  e.  NN0 )
3216adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  S )
3314, 32sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  D )
341psrbagf 19365 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  j  e.  D )  ->  j : I --> NN0 )
3527, 33, 34syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j :
I --> NN0 )
3635ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( j `  z
)  e.  NN0 )
37 ssrab2 3687 . . . . . . . . . . . . . . . . . 18  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  C_  D
38 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
3937, 38sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  D )
401psrbagf 19365 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  m  e.  D )  ->  m : I --> NN0 )
4127, 39, 40syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m :
I --> NN0 )
4241ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( m `  z
)  e.  NN0 )
43 nn0cn 11302 . . . . . . . . . . . . . . . 16  |-  ( ( F `  z )  e.  NN0  ->  ( F `
 z )  e.  CC )
44 nn0cn 11302 . . . . . . . . . . . . . . . 16  |-  ( ( j `  z )  e.  NN0  ->  ( j `
 z )  e.  CC )
45 nn0cn 11302 . . . . . . . . . . . . . . . 16  |-  ( ( m `  z )  e.  NN0  ->  ( m `
 z )  e.  CC )
46 sub32 10315 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  e.  CC  /\  ( j `  z
)  e.  CC  /\  ( m `  z
)  e.  CC )  ->  ( ( ( F `  z )  -  ( j `  z ) )  -  ( m `  z
) )  =  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) )
4743, 44, 45, 46syl3an 1368 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  z
)  e.  NN0  /\  ( j `  z
)  e.  NN0  /\  ( m `  z
)  e.  NN0 )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4831, 36, 42, 47syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4948mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( z  e.  I  |->  ( ( ( F `  z
)  -  ( j `
 z ) )  -  ( m `  z ) ) )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  ( m `  z ) )  -  ( j `  z
) ) ) )
50 ovexd 6680 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
j `  z )
)  e.  _V )
5130feqmptd 6249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  =  ( z  e.  I  |->  ( F `  z
) ) )
5235feqmptd 6249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  =  ( z  e.  I  |->  ( j `  z
) ) )
5327, 31, 36, 51, 52offval2 6914 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( j `  z ) ) ) )
5441feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  =  ( z  e.  I  |->  ( m `  z
) ) )
5527, 50, 42, 53, 54offval2 6914 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
j `  z )
)  -  ( m `
 z ) ) ) )
56 ovexd 6680 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
m `  z )
)  e.  _V )
5727, 31, 42, 51, 54offval2 6914 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  m
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( m `  z ) ) ) )
5827, 56, 36, 57, 52offval2 6914 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) ) )
5949, 55, 583eqtr4d 2666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( ( F  oF  -  m )  oF  -  j ) )
6019adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  e.  D )
611, 20psrbagconcl 19373 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D  /\  m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6227, 60, 38, 61syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6359, 62eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6459mpteq2dva 4744 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) )  =  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  m )  oF  -  j
) ) )
65 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ n X
66 nfcsb1v 3549 . . . . . . . . . . . . 13  |-  F/_ k [_ n  /  k ]_ X
67 csbeq1a 3542 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  X  =  [_ n  /  k ]_ X )
6865, 66, 67cbvmpt 4749 . . . . . . . . . . . 12  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X )
6968a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X ) )
70 csbeq1 3536 . . . . . . . . . . 11  |-  ( n  =  ( ( F  oF  -  m
)  oF  -  j )  ->  [_ n  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
7163, 64, 69, 70fmptco 6396 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) )  =  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
7271feq1d 6030 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  <->  ( m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B ) )
7326, 72mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
74 eqid 2622 . . . . . . . . 9  |-  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
7574fmpt 6381 . . . . . . . 8  |-  ( A. m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B  <->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
7673, 75sylibr 224 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  A. m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }
[_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X  e.  B
)
7776r19.21bi 2932 . . . . . 6  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
7877anasss 679 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
797, 78syldan 487 . . . 4  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
801, 2, 3, 4, 5, 6, 79gsumbagdiag 19376 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
81 eqid 2622 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
821psrbaglefi 19372 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
833, 4, 82syl2anc 693 . . . . 5  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
842, 83syl5eqel 2705 . . . 4  |-  ( ph  ->  S  e.  Fin )
853adantr 481 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  I  e.  V )
864adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  F  e.  D )
87 simpr 477 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  m  e.  S )
881, 2psrbagconcl 19373 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D  /\  m  e.  S )  ->  ( F  oF  -  m )  e.  S )
8985, 86, 87, 88syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  S )
9014, 89sseldi 3601 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  D )
911psrbaglefi 19372 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  m )  e.  D
)  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
9285, 90, 91syl2anc 693 . . . 4  |-  ( (
ph  /\  m  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
93 xpfi 8231 . . . . 5  |-  ( ( S  e.  Fin  /\  S  e.  Fin )  ->  ( S  X.  S
)  e.  Fin )
9484, 84, 93syl2anc 693 . . . 4  |-  ( ph  ->  ( S  X.  S
)  e.  Fin )
95 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m  e.  S )
967simpld 475 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  j  e.  S )
97 brxp 5147 . . . . . . 7  |-  ( m ( S  X.  S
) j  <->  ( m  e.  S  /\  j  e.  S ) )
9895, 96, 97sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m
( S  X.  S
) j )
9998pm2.24d 147 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  ( -.  m ( S  X.  S ) j  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
10099impr 649 . . . 4  |-  ( (
ph  /\  ( (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )  /\  -.  m ( S  X.  S ) j ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1015, 81, 6, 84, 92, 79, 94, 100gsum2d2 18373 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1021psrbaglefi 19372 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
10312, 19, 102syl2anc 693 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
104 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j  e.  S )
1051, 2, 3, 4gsumbagdiaglem 19375 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )
106105simpld 475 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  m  e.  S )
107 brxp 5147 . . . . . . 7  |-  ( j ( S  X.  S
) m  <->  ( j  e.  S  /\  m  e.  S ) )
108104, 106, 107sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j
( S  X.  S
) m )
109108pm2.24d 147 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  ( -.  j ( S  X.  S ) m  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
110109impr 649 . . . 4  |-  ( (
ph  /\  ( (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  -.  j ( S  X.  S ) m ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1115, 81, 6, 84, 103, 78, 94, 110gsum2d2 18373 . . 3  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
11280, 101, 1113eqtr3d 2664 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1136adantr 481 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  G  e. CMnd )
11479anassrs 680 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  S )  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
115 eqid 2622 . . . . . . . . 9  |-  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
116114, 115fmptd 6385 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } --> B )
117 ovex 6678 . . . . . . . . . . . 12  |-  ( NN0 
^m  I )  e. 
_V
1181, 117rabex2 4815 . . . . . . . . . . 11  |-  D  e. 
_V
119118a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  S )  ->  D  e.  _V )
120 rabexg 4812 . . . . . . . . . 10  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V )
121 mptexg 6484 . . . . . . . . . 10  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
122119, 120, 1213syl 18 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
123 funmpt 5926 . . . . . . . . . 10  |-  Fun  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
124123a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  Fun  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
125 fvexd 6203 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  ( 0g `  G )  e. 
_V )
126 suppssdm 7308 . . . . . . . . . . 11  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  dom  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
127115dmmptss 5631 . . . . . . . . . . 11  |-  dom  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
128126, 127sstri 3612 . . . . . . . . . 10  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
129128a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
130 suppssfifsupp 8290 . . . . . . . . 9  |-  ( ( ( ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  e.  _V  /\ 
Fun  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) }  e.  Fin  /\  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )  ->  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) finSupp  ( 0g
`  G ) )
131122, 124, 125, 92, 129, 130syl32anc 1334 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) finSupp  ( 0g `  G
) )
1325, 81, 113, 92, 116, 131gsumcl 18316 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  e.  B
)
133 eqid 2622 . . . . . . 7  |-  ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
134132, 133fmptd 6385 . . . . . 6  |-  ( ph  ->  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B )
1351, 2psrbagconf1o 19374 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
1363, 4, 135syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
137 f1ocnv 6149 . . . . . . 7  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
138 f1of 6137 . . . . . . 7  |-  ( `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )
139136, 137, 1383syl 18 . . . . . 6  |-  ( ph  ->  `' ( m  e.  S  |->  ( F  oF  -  m )
) : S --> S )
140 fco 6058 . . . . . 6  |-  ( ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B  /\  `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )  ->  ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
141134, 139, 140syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
142 coass 5654 . . . . . . . 8  |-  ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
143 f1ococnv2 6163 . . . . . . . . . 10  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  ( (
m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  (  _I  |`  S )
)
144136, 143syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( m  e.  S  |->  ( F  oF  -  m )
)  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) )  =  (  _I  |`  S ) )
145144coeq2d 5284 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m
) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
146142, 145syl5eq 2668 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
147 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) )  =  ( m  e.  S  |->  ( F  oF  -  m )
) )
148 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
149 breq2 4657 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  ( x  oR  <_  n  <->  x  oR  <_  ( F  oF  -  m )
) )
150149rabbidv 3189 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  { x  e.  D  |  x  oR 
<_  n }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
151 ovex 6678 . . . . . . . . . . . . 13  |-  ( n  oF  -  j
)  e.  _V
152 psrass1lem.y . . . . . . . . . . . . 13  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
153151, 152csbie 3559 . . . . . . . . . . . 12  |-  [_ (
n  oF  -  j )  /  k ]_ X  =  Y
154 oveq1 6657 . . . . . . . . . . . . 13  |-  ( n  =  ( F  oF  -  m )  ->  ( n  oF  -  j )  =  ( ( F  oF  -  m )  oF  -  j
) )
155154csbeq1d 3540 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  [_ ( n  oF  -  j )  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
156153, 155syl5eqr 2670 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  Y  =  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
157150, 156mpteq12dv 4733 . . . . . . . . . 10  |-  ( n  =  ( F  oF  -  m )  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y )  =  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
158157oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( F  oF  -  m )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) )  =  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
15989, 147, 148, 158fmptco 6396 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
160159coeq1d 5283 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
161 coires1 5653 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )
162 ssid 3624 . . . . . . . . . 10  |-  S  C_  S
163 resmpt 5449 . . . . . . . . . 10  |-  ( S 
C_  S  ->  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
164162, 163ax-mp 5 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
165161, 164eqtri 2644 . . . . . . . 8  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
166165a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
167146, 160, 1663eqtr3d 2664 . . . . . 6  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
168167feq1d 6030 . . . . 5  |-  ( ph  ->  ( ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B 
<->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B ) )
169141, 168mpbid 222 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B )
170 rabexg 4812 . . . . . . . 8  |-  ( D  e.  _V  ->  { y  e.  D  |  y  oR  <_  F }  e.  _V )
171118, 170mp1i 13 . . . . . . 7  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  _V )
1722, 171syl5eqel 2705 . . . . . 6  |-  ( ph  ->  S  e.  _V )
173 mptexg 6484 . . . . . 6  |-  ( S  e.  _V  ->  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
174172, 173syl 17 . . . . 5  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
175 funmpt 5926 . . . . . 6  |-  Fun  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
176175a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
177 fvexd 6203 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
178 suppssdm 7308 . . . . . . 7  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  dom  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
179 eqid 2622 . . . . . . . 8  |-  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
180179dmmptss 5631 . . . . . . 7  |-  dom  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  C_  S
181178, 180sstri 3612 . . . . . 6  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S
182181a1i 11 . . . . 5  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G
) )  C_  S
)
183 suppssfifsupp 8290 . . . . 5  |-  ( ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V  /\  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  /\  ( 0g
`  G )  e. 
_V )  /\  ( S  e.  Fin  /\  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S ) )  -> 
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
184174, 176, 177, 84, 182, 183syl32anc 1334 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
1855, 81, 6, 84, 169, 184, 136gsumf1o 18317 . . 3  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) ) )
186159oveq2d 6666 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
187185, 186eqtrd 2656 . 2  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1886adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  G  e. CMnd )
189118a1i 11 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  D  e.  _V )
190 rabexg 4812 . . . . . . . 8  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V )
191 mptexg 6484 . . . . . . . 8  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V  ->  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
192189, 190, 1913syl 18 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
193 funmpt 5926 . . . . . . . 8  |-  Fun  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
194193a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  Fun  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )
195 fvexd 6203 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  ( 0g `  G )  e. 
_V )
196 suppssdm 7308 . . . . . . . . 9  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  dom  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
19710dmmptss 5631 . . . . . . . . 9  |-  dom  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) 
C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
198196, 197sstri 3612 . . . . . . . 8  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
199198a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
200 suppssfifsupp 8290 . . . . . . 7  |-  ( ( ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  e.  _V  /\ 
Fun  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  e.  Fin  /\  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )  ->  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X ) finSupp  ( 0g
`  G ) )
201192, 194, 195, 103, 199, 200syl32anc 1334 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) finSupp 
( 0g `  G
) )
2025, 81, 188, 103, 11, 201, 22gsumf1o 18317 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) ) )
20371oveq2d 6666 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) )  =  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
204202, 203eqtrd 2656 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
205204mpteq2dva 4744 . . 3  |-  ( ph  ->  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) )  =  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
206205oveq2d 6666 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
207112, 187, 2063eqtr4d 2666 1  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895    oRcofr 6896   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   CCcc 9934    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  psrass1  19405
  Copyright terms: Public domain W3C validator