MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inagswap Structured version   Visualization version   Unicode version

Theorem inagswap 25730
Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p  |-  P  =  ( Base `  G
)
isinag.i  |-  I  =  (Itv `  G )
isinag.k  |-  K  =  (hlG `  G )
isinag.x  |-  ( ph  ->  X  e.  P )
isinag.a  |-  ( ph  ->  A  e.  P )
isinag.b  |-  ( ph  ->  B  e.  P )
isinag.c  |-  ( ph  ->  C  e.  P )
inagswap.g  |-  ( ph  ->  G  e. TarskiG )
inagswap.1  |-  ( ph  ->  X (inA `  G
) <" A B C "> )
Assertion
Ref Expression
inagswap  |-  ( ph  ->  X (inA `  G
) <" C B A "> )

Proof of Theorem inagswap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inagswap.1 . . . . . . 7  |-  ( ph  ->  X (inA `  G
) <" A B C "> )
2 isinag.p . . . . . . . 8  |-  P  =  ( Base `  G
)
3 isinag.i . . . . . . . 8  |-  I  =  (Itv `  G )
4 isinag.k . . . . . . . 8  |-  K  =  (hlG `  G )
5 isinag.x . . . . . . . 8  |-  ( ph  ->  X  e.  P )
6 isinag.a . . . . . . . 8  |-  ( ph  ->  A  e.  P )
7 isinag.b . . . . . . . 8  |-  ( ph  ->  B  e.  P )
8 isinag.c . . . . . . . 8  |-  ( ph  ->  C  e.  P )
9 inagswap.g . . . . . . . 8  |-  ( ph  ->  G  e. TarskiG )
102, 3, 4, 5, 6, 7, 8, 9isinag 25729 . . . . . . 7  |-  ( ph  ->  ( X (inA `  G ) <" A B C ">  <->  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) )
111, 10mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( A  =/= 
B  /\  C  =/=  B  /\  X  =/=  B
)  /\  E. x  e.  P  ( x  e.  ( A I C )  /\  ( x  =  B  \/  x
( K `  B
) X ) ) ) )
1211simpld 475 . . . . 5  |-  ( ph  ->  ( A  =/=  B  /\  C  =/=  B  /\  X  =/=  B
) )
1312simp2d 1074 . . . 4  |-  ( ph  ->  C  =/=  B )
1412simp1d 1073 . . . 4  |-  ( ph  ->  A  =/=  B )
1512simp3d 1075 . . . 4  |-  ( ph  ->  X  =/=  B )
1613, 14, 153jca 1242 . . 3  |-  ( ph  ->  ( C  =/=  B  /\  A  =/=  B  /\  X  =/=  B
) )
1711simprd 479 . . . 4  |-  ( ph  ->  E. x  e.  P  ( x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) )
18 eqid 2622 . . . . . . . 8  |-  ( dist `  G )  =  (
dist `  G )
1993ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  G  e. TarskiG )
2063ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  A  e.  P )
21 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  x  e.  P )
2283ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  C  e.  P )
23 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  x  e.  ( A I C ) )
242, 18, 3, 19, 20, 21, 22, 23tgbtwncom 25383 . . . . . . 7  |-  ( (
ph  /\  x  e.  P  /\  x  e.  ( A I C ) )  ->  x  e.  ( C I A ) )
25243expia 1267 . . . . . 6  |-  ( (
ph  /\  x  e.  P )  ->  (
x  e.  ( A I C )  ->  x  e.  ( C I A ) ) )
2625anim1d 588 . . . . 5  |-  ( (
ph  /\  x  e.  P )  ->  (
( x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) )  -> 
( x  e.  ( C I A )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) )
2726reximdva 3017 . . . 4  |-  ( ph  ->  ( E. x  e.  P  ( x  e.  ( A I C )  /\  ( x  =  B  \/  x
( K `  B
) X ) )  ->  E. x  e.  P  ( x  e.  ( C I A )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) )
2817, 27mpd 15 . . 3  |-  ( ph  ->  E. x  e.  P  ( x  e.  ( C I A )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) )
2916, 28jca 554 . 2  |-  ( ph  ->  ( ( C  =/= 
B  /\  A  =/=  B  /\  X  =/=  B
)  /\  E. x  e.  P  ( x  e.  ( C I A )  /\  ( x  =  B  \/  x
( K `  B
) X ) ) ) )
302, 3, 4, 5, 8, 7, 6, 9isinag 25729 . 2  |-  ( ph  ->  ( X (inA `  G ) <" C B A ">  <->  ( ( C  =/=  B  /\  A  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( C I A )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) )
3129, 30mpbird 247 1  |-  ( ph  ->  X (inA `  G
) <" C B A "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  hlGchlg 25495  inAcinag 25726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-inag 25728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator