MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   Unicode version

Theorem isinag 25729
Description: Property for point  X to lie in the angle  <" A B C "> Defnition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p  |-  P  =  ( Base `  G
)
isinag.i  |-  I  =  (Itv `  G )
isinag.k  |-  K  =  (hlG `  G )
isinag.x  |-  ( ph  ->  X  e.  P )
isinag.a  |-  ( ph  ->  A  e.  P )
isinag.b  |-  ( ph  ->  B  e.  P )
isinag.c  |-  ( ph  ->  C  e.  P )
isinag.g  |-  ( ph  ->  G  e.  V )
Assertion
Ref Expression
isinag  |-  ( ph  ->  ( X (inA `  G ) <" A B C ">  <->  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, G    x, P    x, X    ph, x
Allowed substitution hints:    I( x)    K( x)    V( x)

Proof of Theorem isinag
Dummy variables  p  t  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . 9  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  t  =  <" A B C "> )
21fveq1d 6193 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( t `  0
)  =  ( <" A B C "> `  0
) )
31fveq1d 6193 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( t `  1
)  =  ( <" A B C "> `  1
) )
42, 3neeq12d 2855 . . . . . . 7  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( t ` 
0 )  =/=  (
t `  1 )  <->  (
<" A B C "> `  0
)  =/=  ( <" A B C "> `  1
) ) )
51fveq1d 6193 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( t `  2
)  =  ( <" A B C "> `  2
) )
65, 3neeq12d 2855 . . . . . . 7  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( t ` 
2 )  =/=  (
t `  1 )  <->  (
<" A B C "> `  2
)  =/=  ( <" A B C "> `  1
) ) )
7 simpl 473 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  p  =  X )
87, 3neeq12d 2855 . . . . . . 7  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( p  =/=  (
t `  1 )  <->  X  =/=  ( <" A B C "> `  1
) ) )
94, 6, 83anbi123d 1399 . . . . . 6  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  <->  ( ( <" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) ) ) )
10 eqidd 2623 . . . . . . . . 9  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  x  =  x )
112, 5oveq12d 6668 . . . . . . . . 9  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( t ` 
0 ) I ( t `  2 ) )  =  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) ) )
1210, 11eleq12d 2695 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( x  e.  ( ( t `  0
) I ( t `
 2 ) )  <-> 
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) ) ) )
1310, 3eqeq12d 2637 . . . . . . . . 9  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( x  =  ( t `  1 )  <-> 
x  =  ( <" A B C "> `  1
) ) )
143fveq2d 6195 . . . . . . . . . 10  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( K `  (
t `  1 )
)  =  ( K `
 ( <" A B C "> `  1
) ) )
1510, 14, 7breq123d 4667 . . . . . . . . 9  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( x ( K `
 ( t ` 
1 ) ) p  <-> 
x ( K `  ( <" A B C "> `  1
) ) X ) )
1613, 15orbi12d 746 . . . . . . . 8  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( x  =  ( t `  1
)  \/  x ( K `  ( t `
 1 ) ) p )  <->  ( x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) )
1712, 16anbi12d 747 . . . . . . 7  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( x  e.  ( ( t ` 
0 ) I ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( K `  (
t `  1 )
) p ) )  <-> 
( x  e.  ( ( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) )
1817rexbidv 3052 . . . . . 6  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( E. x  e.  P  ( x  e.  ( ( t ` 
0 ) I ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( K `  (
t `  1 )
) p ) )  <->  E. x  e.  P  ( x  e.  (
( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) )
199, 18anbi12d 747 . . . . 5  |-  ( ( p  =  X  /\  t  =  <" A B C "> )  ->  ( ( ( ( t `  0 )  =/=  ( t ` 
1 )  /\  (
t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) )  <->  ( (
( <" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  /\  E. x  e.  P  (
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) ) )
20 eqid 2622 . . . . 5  |-  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }  =  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }
2119, 20brab2a 5194 . . . 4  |-  ( X { <. p ,  t
>.  |  ( (
p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  (
( ( t ` 
0 )  =/=  (
t `  1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }
<" A B C ">  <->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( (
<" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  /\  E. x  e.  P  (
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) ) )
2221a1i 11 . . 3  |-  ( ph  ->  ( X { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }
<" A B C ">  <->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( (
<" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  /\  E. x  e.  P  (
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) ) ) )
23 biidd 252 . . . 4  |-  ( ph  ->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )  <->  ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) ) ) )
24 isinag.a . . . . . . . 8  |-  ( ph  ->  A  e.  P )
25 s3fv0 13636 . . . . . . . 8  |-  ( A  e.  P  ->  ( <" A B C "> `  0
)  =  A )
2624, 25syl 17 . . . . . . 7  |-  ( ph  ->  ( <" A B C "> `  0
)  =  A )
27 isinag.b . . . . . . . 8  |-  ( ph  ->  B  e.  P )
28 s3fv1 13637 . . . . . . . 8  |-  ( B  e.  P  ->  ( <" A B C "> `  1
)  =  B )
2927, 28syl 17 . . . . . . 7  |-  ( ph  ->  ( <" A B C "> `  1
)  =  B )
3026, 29neeq12d 2855 . . . . . 6  |-  ( ph  ->  ( ( <" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  <->  A  =/=  B
) )
31 isinag.c . . . . . . . 8  |-  ( ph  ->  C  e.  P )
32 s3fv2 13638 . . . . . . . 8  |-  ( C  e.  P  ->  ( <" A B C "> `  2
)  =  C )
3331, 32syl 17 . . . . . . 7  |-  ( ph  ->  ( <" A B C "> `  2
)  =  C )
3433, 29neeq12d 2855 . . . . . 6  |-  ( ph  ->  ( ( <" A B C "> `  2
)  =/=  ( <" A B C "> `  1
)  <->  C  =/=  B
) )
3529neeq2d 2854 . . . . . 6  |-  ( ph  ->  ( X  =/=  ( <" A B C "> `  1
)  <->  X  =/=  B
) )
3630, 34, 353anbi123d 1399 . . . . 5  |-  ( ph  ->  ( ( ( <" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  <->  ( A  =/=  B  /\  C  =/= 
B  /\  X  =/=  B ) ) )
3726, 33oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  =  ( A I C ) )
3837eleq2d 2687 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  <->  x  e.  ( A I C ) ) )
3929eqeq2d 2632 . . . . . . . 8  |-  ( ph  ->  ( x  =  (
<" A B C "> `  1
)  <->  x  =  B
) )
4029fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( K `  ( <" A B C "> `  1
) )  =  ( K `  B ) )
4140breqd 4664 . . . . . . . 8  |-  ( ph  ->  ( x ( K `
 ( <" A B C "> `  1
) ) X  <->  x ( K `  B ) X ) )
4239, 41orbi12d 746 . . . . . . 7  |-  ( ph  ->  ( ( x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X )  <-> 
( x  =  B  \/  x ( K `
 B ) X ) ) )
4338, 42anbi12d 747 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( ( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) )  <->  ( x  e.  ( A I C )  /\  ( x  =  B  \/  x
( K `  B
) X ) ) ) )
4443rexbidv 3052 . . . . 5  |-  ( ph  ->  ( E. x  e.  P  ( x  e.  ( ( <" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) )  <->  E. x  e.  P  ( x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) )
4536, 44anbi12d 747 . . . 4  |-  ( ph  ->  ( ( ( (
<" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  /\  E. x  e.  P  (
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) )  <->  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) )
4623, 45anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( <" A B C "> `  0
)  =/=  ( <" A B C "> `  1
)  /\  ( <" A B C "> `  2 )  =/=  ( <" A B C "> `  1
)  /\  X  =/=  ( <" A B C "> `  1
) )  /\  E. x  e.  P  (
x  e.  ( (
<" A B C "> `  0
) I ( <" A B C "> `  2
) )  /\  (
x  =  ( <" A B C "> `  1
)  \/  x ( K `  ( <" A B C "> `  1
) ) X ) ) ) )  <->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) ) )
4722, 46bitrd 268 . 2  |-  ( ph  ->  ( X { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }
<" A B C ">  <->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) ) )
48 isinag.g . . . 4  |-  ( ph  ->  G  e.  V )
49 elex 3212 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
50 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
51 isinag.p . . . . . . . . . 10  |-  P  =  ( Base `  G
)
5250, 51syl6eqr 2674 . . . . . . . . 9  |-  ( g  =  G  ->  ( Base `  g )  =  P )
5352eleq2d 2687 . . . . . . . 8  |-  ( g  =  G  ->  (
p  e.  ( Base `  g )  <->  p  e.  P ) )
5452oveq1d 6665 . . . . . . . . 9  |-  ( g  =  G  ->  (
( Base `  g )  ^m  ( 0..^ 3 ) )  =  ( P  ^m  ( 0..^ 3 ) ) )
5554eleq2d 2687 . . . . . . . 8  |-  ( g  =  G  ->  (
t  e.  ( (
Base `  g )  ^m  ( 0..^ 3 ) )  <->  t  e.  ( P  ^m  ( 0..^ 3 ) ) ) )
5653, 55anbi12d 747 . . . . . . 7  |-  ( g  =  G  ->  (
( p  e.  (
Base `  g )  /\  t  e.  (
( Base `  g )  ^m  ( 0..^ 3 ) ) )  <->  ( p  e.  P  /\  t  e.  ( P  ^m  (
0..^ 3 ) ) ) ) )
57 fveq2 6191 . . . . . . . . . . . . 13  |-  ( g  =  G  ->  (Itv `  g )  =  (Itv
`  G ) )
58 isinag.i . . . . . . . . . . . . 13  |-  I  =  (Itv `  G )
5957, 58syl6eqr 2674 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (Itv `  g )  =  I )
6059oveqd 6667 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
( t `  0
) (Itv `  g
) ( t ` 
2 ) )  =  ( ( t ` 
0 ) I ( t `  2 ) ) )
6160eleq2d 2687 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x  e.  ( ( t `  0 ) (Itv `  g )
( t `  2
) )  <->  x  e.  ( ( t ` 
0 ) I ( t `  2 ) ) ) )
62 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( g  =  G  ->  (hlG `  g )  =  (hlG
`  G ) )
63 isinag.k . . . . . . . . . . . . . 14  |-  K  =  (hlG `  G )
6462, 63syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( g  =  G  ->  (hlG `  g )  =  K )
6564fveq1d 6193 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (
(hlG `  g ) `  ( t `  1
) )  =  ( K `  ( t `
 1 ) ) )
6665breqd 4664 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
x ( (hlG `  g ) `  (
t `  1 )
) p  <->  x ( K `  ( t `  1 ) ) p ) )
6766orbi2d 738 . . . . . . . . . 10  |-  ( g  =  G  ->  (
( x  =  ( t `  1 )  \/  x ( (hlG
`  g ) `  ( t `  1
) ) p )  <-> 
( x  =  ( t `  1 )  \/  x ( K `
 ( t ` 
1 ) ) p ) ) )
6861, 67anbi12d 747 . . . . . . . . 9  |-  ( g  =  G  ->  (
( x  e.  ( ( t `  0
) (Itv `  g
) ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( (hlG `  g ) `  (
t `  1 )
) p ) )  <-> 
( x  e.  ( ( t `  0
) I ( t `
 2 ) )  /\  ( x  =  ( t `  1
)  \/  x ( K `  ( t `
 1 ) ) p ) ) ) )
6952, 68rexeqbidv 3153 . . . . . . . 8  |-  ( g  =  G  ->  ( E. x  e.  ( Base `  g ) ( x  e.  ( ( t `  0 ) (Itv `  g )
( t `  2
) )  /\  (
x  =  ( t `
 1 )  \/  x ( (hlG `  g ) `  (
t `  1 )
) p ) )  <->  E. x  e.  P  ( x  e.  (
( t `  0
) I ( t `
 2 ) )  /\  ( x  =  ( t `  1
)  \/  x ( K `  ( t `
 1 ) ) p ) ) ) )
7069anbi2d 740 . . . . . . 7  |-  ( g  =  G  ->  (
( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  ( Base `  g ) ( x  e.  ( ( t `
 0 ) (Itv
`  g ) ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( (hlG `  g
) `  ( t `  1 ) ) p ) ) )  <-> 
( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) )
7156, 70anbi12d 747 . . . . . 6  |-  ( g  =  G  ->  (
( ( p  e.  ( Base `  g
)  /\  t  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `  0 )  =/=  ( t ` 
1 )  /\  (
t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  ( Base `  g ) ( x  e.  ( ( t `
 0 ) (Itv
`  g ) ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( (hlG `  g
) `  ( t `  1 ) ) p ) ) ) )  <->  ( ( p  e.  P  /\  t  e.  ( P  ^m  (
0..^ 3 ) ) )  /\  ( ( ( t `  0
)  =/=  ( t `
 1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) ) )
7271opabbidv 4716 . . . . 5  |-  ( g  =  G  ->  { <. p ,  t >.  |  ( ( p  e.  (
Base `  g )  /\  t  e.  (
( Base `  g )  ^m  ( 0..^ 3 ) ) )  /\  (
( ( t ` 
0 )  =/=  (
t `  1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  ( Base `  g ) ( x  e.  ( ( t `
 0 ) (Itv
`  g ) ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( (hlG `  g
) `  ( t `  1 ) ) p ) ) ) ) }  =  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  (
0..^ 3 ) ) )  /\  ( ( ( t `  0
)  =/=  ( t `
 1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) } )
73 df-inag 25728 . . . . 5  |- inA  =  ( g  e.  _V  |->  {
<. p ,  t >.  |  ( ( p  e.  ( Base `  g
)  /\  t  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `  0 )  =/=  ( t ` 
1 )  /\  (
t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  ( Base `  g ) ( x  e.  ( ( t `
 0 ) (Itv
`  g ) ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( (hlG `  g
) `  ( t `  1 ) ) p ) ) ) ) } )
74 fvex 6201 . . . . . . . 8  |-  ( Base `  G )  e.  _V
7551, 74eqeltri 2697 . . . . . . 7  |-  P  e. 
_V
76 ovex 6678 . . . . . . 7  |-  ( P  ^m  ( 0..^ 3 ) )  e.  _V
7775, 76xpex 6962 . . . . . 6  |-  ( P  X.  ( P  ^m  ( 0..^ 3 ) ) )  e.  _V
78 opabssxp 5193 . . . . . 6  |-  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) } 
C_  ( P  X.  ( P  ^m  (
0..^ 3 ) ) )
7977, 78ssexi 4803 . . . . 5  |-  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( ( t `
 0 )  =/=  ( t `  1
)  /\  ( t `  2 )  =/=  ( t `  1
)  /\  p  =/=  ( t `  1
) )  /\  E. x  e.  P  (
x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }  e.  _V
8072, 73, 79fvmpt 6282 . . . 4  |-  ( G  e.  _V  ->  (inA `  G )  =  { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  (
0..^ 3 ) ) )  /\  ( ( ( t `  0
)  =/=  ( t `
 1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) } )
8148, 49, 803syl 18 . . 3  |-  ( ph  ->  (inA `  G )  =  { <. p ,  t
>.  |  ( (
p  e.  P  /\  t  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  (
( ( t ` 
0 )  =/=  (
t `  1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) } )
8281breqd 4664 . 2  |-  ( ph  ->  ( X (inA `  G ) <" A B C ">  <->  X { <. p ,  t >.  |  ( ( p  e.  P  /\  t  e.  ( P  ^m  (
0..^ 3 ) ) )  /\  ( ( ( t `  0
)  =/=  ( t `
 1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  P  ( x  e.  ( ( t `  0 ) I ( t ` 
2 ) )  /\  ( x  =  (
t `  1 )  \/  x ( K `  ( t `  1
) ) p ) ) ) ) }
<" A B C "> ) )
83 isinag.x . . . 4  |-  ( ph  ->  X  e.  P )
8424, 27, 31s3cld 13617 . . . . . 6  |-  ( ph  ->  <" A B C ">  e. Word  P )
85 s3len 13639 . . . . . . 7  |-  ( # `  <" A B C "> )  =  3
8685a1i 11 . . . . . 6  |-  ( ph  ->  ( # `  <" A B C "> )  =  3
)
8784, 86jca 554 . . . . 5  |-  ( ph  ->  ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
) )
88 3nn0 11310 . . . . . 6  |-  3  e.  NN0
89 wrdmap 13336 . . . . . 6  |-  ( ( P  e.  _V  /\  3  e.  NN0 )  -> 
( ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
9075, 88, 89mp2an 708 . . . . 5  |-  ( (
<" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
9187, 90sylib 208 . . . 4  |-  ( ph  ->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
9283, 91jca 554 . . 3  |-  ( ph  ->  ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
9392biantrurd 529 . 2  |-  ( ph  ->  ( ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) )  <->  ( ( X  e.  P  /\  <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) ) )  /\  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) ) )
9447, 82, 933bitr4d 300 1  |-  ( ph  ->  ( X (inA `  G ) <" A B C ">  <->  ( ( A  =/=  B  /\  C  =/=  B  /\  X  =/= 
B )  /\  E. x  e.  P  (
x  e.  ( A I C )  /\  ( x  =  B  \/  x ( K `  B ) X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587   Basecbs 15857  Itvcitv 25335  hlGchlg 25495  inAcinag 25726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-inag 25728
This theorem is referenced by:  inagswap  25730  inaghl  25731
  Copyright terms: Public domain W3C validator