| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpre | Structured version Visualization version Unicode version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 11833 |
. . 3
| |
| 2 | ssrab2 3687 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3635 |
. 2
|
| 4 | 3 | sseli 3599 |
1
|
| Copyright terms: Public domain | W3C validator |