MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   Unicode version

Theorem ip2di 19986
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipdir.g  |-  .+  =  ( +g  `  W )
ipdir.p  |-  .+^  =  ( +g  `  F )
ip2di.1  |-  ( ph  ->  W  e.  PreHil )
ip2di.2  |-  ( ph  ->  A  e.  V )
ip2di.3  |-  ( ph  ->  B  e.  V )
ip2di.4  |-  ( ph  ->  C  e.  V )
ip2di.5  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
ip2di  |-  ( ph  ->  ( ( A  .+  B )  .,  ( C  .+  D ) )  =  ( ( ( A  .,  C ) 
.+^  ( B  .,  D ) )  .+^  ( ( A  .,  D )  .+^  ( B 
.,  C ) ) ) )

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3  |-  ( ph  ->  W  e.  PreHil )
2 ip2di.2 . . 3  |-  ( ph  ->  A  e.  V )
3 ip2di.3 . . 3  |-  ( ph  ->  B  e.  V )
4 phllmod 19975 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
51, 4syl 17 . . . 4  |-  ( ph  ->  W  e.  LMod )
6 ip2di.4 . . . 4  |-  ( ph  ->  C  e.  V )
7 ip2di.5 . . . 4  |-  ( ph  ->  D  e.  V )
8 phllmhm.v . . . . 5  |-  V  =  ( Base `  W
)
9 ipdir.g . . . . 5  |-  .+  =  ( +g  `  W )
108, 9lmodvacl 18877 . . . 4  |-  ( ( W  e.  LMod  /\  C  e.  V  /\  D  e.  V )  ->  ( C  .+  D )  e.  V )
115, 6, 7, 10syl3anc 1326 . . 3  |-  ( ph  ->  ( C  .+  D
)  e.  V )
12 phlsrng.f . . . 4  |-  F  =  (Scalar `  W )
13 phllmhm.h . . . 4  |-  .,  =  ( .i `  W )
14 ipdir.p . . . 4  |-  .+^  =  ( +g  `  F )
1512, 13, 8, 9, 14ipdir 19984 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  ( C  .+  D )  e.  V ) )  ->  ( ( A 
.+  B )  .,  ( C  .+  D ) )  =  ( ( A  .,  ( C 
.+  D ) ) 
.+^  ( B  .,  ( C  .+  D ) ) ) )
161, 2, 3, 11, 15syl13anc 1328 . 2  |-  ( ph  ->  ( ( A  .+  B )  .,  ( C  .+  D ) )  =  ( ( A 
.,  ( C  .+  D ) )  .+^  ( B  .,  ( C 
.+  D ) ) ) )
1712, 13, 8, 9, 14ipdi 19985 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  C  e.  V  /\  D  e.  V )
)  ->  ( A  .,  ( C  .+  D
) )  =  ( ( A  .,  C
)  .+^  ( A  .,  D ) ) )
181, 2, 6, 7, 17syl13anc 1328 . . 3  |-  ( ph  ->  ( A  .,  ( C  .+  D ) )  =  ( ( A 
.,  C )  .+^  ( A  .,  D ) ) )
1912, 13, 8, 9, 14ipdi 19985 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( B  e.  V  /\  C  e.  V  /\  D  e.  V )
)  ->  ( B  .,  ( C  .+  D
) )  =  ( ( B  .,  C
)  .+^  ( B  .,  D ) ) )
201, 3, 6, 7, 19syl13anc 1328 . . . 4  |-  ( ph  ->  ( B  .,  ( C  .+  D ) )  =  ( ( B 
.,  C )  .+^  ( B  .,  D ) ) )
2112phlsrng 19976 . . . . . 6  |-  ( W  e.  PreHil  ->  F  e.  *Ring )
22 srngring 18852 . . . . . 6  |-  ( F  e.  *Ring  ->  F  e.  Ring )
23 ringcmn 18581 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. CMnd
)
241, 21, 22, 234syl 19 . . . . 5  |-  ( ph  ->  F  e. CMnd )
25 eqid 2622 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
2612, 13, 8, 25ipcl 19978 . . . . . 6  |-  ( ( W  e.  PreHil  /\  B  e.  V  /\  C  e.  V )  ->  ( B  .,  C )  e.  ( Base `  F
) )
271, 3, 6, 26syl3anc 1326 . . . . 5  |-  ( ph  ->  ( B  .,  C
)  e.  ( Base `  F ) )
2812, 13, 8, 25ipcl 19978 . . . . . 6  |-  ( ( W  e.  PreHil  /\  B  e.  V  /\  D  e.  V )  ->  ( B  .,  D )  e.  ( Base `  F
) )
291, 3, 7, 28syl3anc 1326 . . . . 5  |-  ( ph  ->  ( B  .,  D
)  e.  ( Base `  F ) )
3025, 14cmncom 18209 . . . . 5  |-  ( ( F  e. CMnd  /\  ( B  .,  C )  e.  ( Base `  F
)  /\  ( B  .,  D )  e.  (
Base `  F )
)  ->  ( ( B  .,  C )  .+^  ( B  .,  D ) )  =  ( ( B  .,  D ) 
.+^  ( B  .,  C ) ) )
3124, 27, 29, 30syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( B  .,  C )  .+^  ( B 
.,  D ) )  =  ( ( B 
.,  D )  .+^  ( B  .,  C ) ) )
3220, 31eqtrd 2656 . . 3  |-  ( ph  ->  ( B  .,  ( C  .+  D ) )  =  ( ( B 
.,  D )  .+^  ( B  .,  C ) ) )
3318, 32oveq12d 6668 . 2  |-  ( ph  ->  ( ( A  .,  ( C  .+  D ) )  .+^  ( B  .,  ( C  .+  D
) ) )  =  ( ( ( A 
.,  C )  .+^  ( A  .,  D ) )  .+^  ( ( B  .,  D )  .+^  ( B  .,  C ) ) ) )
3412, 13, 8, 25ipcl 19978 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  C  e.  V )  ->  ( A  .,  C )  e.  ( Base `  F
) )
351, 2, 6, 34syl3anc 1326 . . 3  |-  ( ph  ->  ( A  .,  C
)  e.  ( Base `  F ) )
3612, 13, 8, 25ipcl 19978 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  D  e.  V )  ->  ( A  .,  D )  e.  ( Base `  F
) )
371, 2, 7, 36syl3anc 1326 . . 3  |-  ( ph  ->  ( A  .,  D
)  e.  ( Base `  F ) )
3825, 14cmn4 18212 . . 3  |-  ( ( F  e. CMnd  /\  (
( A  .,  C
)  e.  ( Base `  F )  /\  ( A  .,  D )  e.  ( Base `  F
) )  /\  (
( B  .,  D
)  e.  ( Base `  F )  /\  ( B  .,  C )  e.  ( Base `  F
) ) )  -> 
( ( ( A 
.,  C )  .+^  ( A  .,  D ) )  .+^  ( ( B  .,  D )  .+^  ( B  .,  C ) ) )  =  ( ( ( A  .,  C )  .+^  ( B 
.,  D ) ) 
.+^  ( ( A 
.,  D )  .+^  ( B  .,  C ) ) ) )
3924, 35, 37, 29, 27, 38syl122anc 1335 . 2  |-  ( ph  ->  ( ( ( A 
.,  C )  .+^  ( A  .,  D ) )  .+^  ( ( B  .,  D )  .+^  ( B  .,  C ) ) )  =  ( ( ( A  .,  C )  .+^  ( B 
.,  D ) ) 
.+^  ( ( A 
.,  D )  .+^  ( B  .,  C ) ) ) )
4016, 33, 393eqtrd 2660 1  |-  ( ph  ->  ( ( A  .+  B )  .,  ( C  .+  D ) )  =  ( ( ( A  .,  C ) 
.+^  ( B  .,  D ) )  .+^  ( ( A  .,  D )  .+^  ( B 
.,  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .icip 15946  CMndccmn 18193   Ringcrg 18547   *Ringcsr 18844   LModclmod 18863   PreHilcphl 19969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-rnghom 18715  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971
This theorem is referenced by:  cph2di  23007
  Copyright terms: Public domain W3C validator