MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   Unicode version

Theorem ipeq0 19983
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ip0l.z  |-  Z  =  ( 0g `  F
)
ip0l.o  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
ipeq0  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  Z  <->  A  =  .0.  ) )

Proof of Theorem ipeq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6  |-  V  =  ( Base `  W
)
2 phlsrng.f . . . . . 6  |-  F  =  (Scalar `  W )
3 phllmhm.h . . . . . 6  |-  .,  =  ( .i `  W )
4 ip0l.o . . . . . 6  |-  .0.  =  ( 0g `  W )
5 eqid 2622 . . . . . 6  |-  ( *r `  F )  =  ( *r `  F )
6 ip0l.z . . . . . 6  |-  Z  =  ( 0g `  F
)
71, 2, 3, 4, 5, 6isphl 19973 . . . . 5  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (
( *r `  F ) `  (
x  .,  y )
)  =  ( y 
.,  x ) ) ) )
87simp3bi 1078 . . . 4  |-  ( W  e.  PreHil  ->  A. x  e.  V  ( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  ( ( *r `  F ) `  ( x  .,  y ) )  =  ( y 
.,  x ) ) )
9 simp2 1062 . . . . 5  |-  ( ( ( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (
( *r `  F ) `  (
x  .,  y )
)  =  ( y 
.,  x ) )  ->  ( ( x 
.,  x )  =  Z  ->  x  =  .0.  ) )
109ralimi 2952 . . . 4  |-  ( A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (
( *r `  F ) `  (
x  .,  y )
)  =  ( y 
.,  x ) )  ->  A. x  e.  V  ( ( x  .,  x )  =  Z  ->  x  =  .0.  ) )
118, 10syl 17 . . 3  |-  ( W  e.  PreHil  ->  A. x  e.  V  ( ( x  .,  x )  =  Z  ->  x  =  .0.  ) )
12 oveq12 6659 . . . . . . 7  |-  ( ( x  =  A  /\  x  =  A )  ->  ( x  .,  x
)  =  ( A 
.,  A ) )
1312anidms 677 . . . . . 6  |-  ( x  =  A  ->  (
x  .,  x )  =  ( A  .,  A ) )
1413eqeq1d 2624 . . . . 5  |-  ( x  =  A  ->  (
( x  .,  x
)  =  Z  <->  ( A  .,  A )  =  Z ) )
15 eqeq1 2626 . . . . 5  |-  ( x  =  A  ->  (
x  =  .0.  <->  A  =  .0.  ) )
1614, 15imbi12d 334 . . . 4  |-  ( x  =  A  ->  (
( ( x  .,  x )  =  Z  ->  x  =  .0.  )  <->  ( ( A 
.,  A )  =  Z  ->  A  =  .0.  ) ) )
1716rspccva 3308 . . 3  |-  ( ( A. x  e.  V  ( ( x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A  e.  V )  ->  (
( A  .,  A
)  =  Z  ->  A  =  .0.  )
)
1811, 17sylan 488 . 2  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  Z  ->  A  =  .0.  )
)
192, 3, 1, 6, 4ip0l 19981 . . 3  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  (  .0.  .,  A )  =  Z )
20 oveq1 6657 . . . 4  |-  ( A  =  .0.  ->  ( A  .,  A )  =  (  .0.  .,  A
) )
2120eqeq1d 2624 . . 3  |-  ( A  =  .0.  ->  (
( A  .,  A
)  =  Z  <->  (  .0.  .,  A )  =  Z ) )
2219, 21syl5ibrcom 237 . 2  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  ( A  =  .0.  ->  ( A  .,  A )  =  Z ) )
2318, 22impbid 202 1  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  Z  <->  A  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857   *rcstv 15943  Scalarcsca 15944   .icip 15946   0gc0g 16100   *Ringcsr 18844   LMHom clmhm 19019   LVecclvec 19102  ringLModcrglmod 19169   PreHilcphl 19969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971
This theorem is referenced by:  ip2eq  19998  ocvin  20018  lsmcss  20036  obsne0  20069  cphipeq0  23004  ipcau2  23033  tchcph  23036
  Copyright terms: Public domain W3C validator