MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil3 Structured version   Visualization version   Unicode version

Theorem iscfil3 23071
Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
iscfil3  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) ) )
Distinct variable groups:    x, r, F    X, r, x    D, r, x

Proof of Theorem iscfil3
Dummy variables  u  s  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilfil 23065 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  F  e.  ( Fil `  X ) )
2 cfil3i 23067 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  r  e.  RR+ )  ->  E. x  e.  X  ( x
( ball `  D )
r )  e.  F
)
323expa 1265 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  r  e.  RR+ )  ->  E. x  e.  X  ( x ( ball `  D ) r )  e.  F )
43ralrimiva 2966 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  A. r  e.  RR+  E. x  e.  X  ( x
( ball `  D )
r )  e.  F
)
51, 4jca 554 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  -> 
( F  e.  ( Fil `  X )  /\  A. r  e.  RR+  E. x  e.  X  ( x ( ball `  D ) r )  e.  F ) )
6 simprl 794 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) )  ->  F  e.  ( Fil `  X
) )
7 rphalfcl 11858 . . . . . . . 8  |-  ( s  e.  RR+  ->  ( s  /  2 )  e.  RR+ )
87adantl 482 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR+ )
9 oveq2 6658 . . . . . . . . . 10  |-  ( r  =  ( s  / 
2 )  ->  (
x ( ball `  D
) r )  =  ( x ( ball `  D ) ( s  /  2 ) ) )
109eleq1d 2686 . . . . . . . . 9  |-  ( r  =  ( s  / 
2 )  ->  (
( x ( ball `  D ) r )  e.  F  <->  ( x
( ball `  D )
( s  /  2
) )  e.  F
) )
1110rexbidv 3052 . . . . . . . 8  |-  ( r  =  ( s  / 
2 )  ->  ( E. x  e.  X  ( x ( ball `  D ) r )  e.  F  <->  E. x  e.  X  ( x
( ball `  D )
( s  /  2
) )  e.  F
) )
1211rspcv 3305 . . . . . . 7  |-  ( ( s  /  2 )  e.  RR+  ->  ( A. r  e.  RR+  E. x  e.  X  ( x
( ball `  D )
r )  e.  F  ->  E. x  e.  X  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )
138, 12syl 17 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  s  e.  RR+ )  ->  ( A. r  e.  RR+  E. x  e.  X  ( x
( ball `  D )
r )  e.  F  ->  E. x  e.  X  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )
14 simprr 796 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  ->  ( x (
ball `  D )
( s  /  2
) )  e.  F
)
15 simp-4l 806 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  D  e.  ( *Met `  X
) )
16 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  x  e.  X )
17 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  s  e.  RR+ )
1817rpred 11872 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  s  e.  RR )
19 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  u  e.  ( x ( ball `  D ) ( s  /  2 ) ) )
20 blhalf 22210 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  (
s  e.  RR  /\  u  e.  ( x
( ball `  D )
( s  /  2
) ) ) )  ->  ( x (
ball `  D )
( s  /  2
) )  C_  (
u ( ball `  D
) s ) )
2115, 16, 18, 19, 20syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( x
( ball `  D )
( s  /  2
) )  C_  (
u ( ball `  D
) s ) )
22 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  v  e.  ( x ( ball `  D ) ( s  /  2 ) ) )
2321, 22sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  v  e.  ( u ( ball `  D ) s ) )
2417rpxrd 11873 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  s  e.  RR* )
2517, 7syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( s  /  2 )  e.  RR+ )
2625rpxrd 11873 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( s  /  2 )  e. 
RR* )
27 blssm 22223 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( s  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( s  /  2 ) ) 
C_  X )
2815, 16, 26, 27syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( x
( ball `  D )
( s  /  2
) )  C_  X
)
2928, 19sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  u  e.  X )
3028, 22sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  v  e.  X )
31 elbl2 22195 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  s  e.  RR* )  /\  ( u  e.  X  /\  v  e.  X ) )  -> 
( v  e.  ( u ( ball `  D
) s )  <->  ( u D v )  < 
s ) )
3215, 24, 29, 30, 31syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( v  e.  ( u ( ball `  D ) s )  <-> 
( u D v )  <  s ) )
3323, 32mpbid 222 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  /\  ( u  e.  ( x ( ball `  D ) ( s  /  2 ) )  /\  v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ) )  ->  ( u D v )  < 
s )
3433ralrimivva 2971 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  ->  A. u  e.  ( x ( ball `  D
) ( s  / 
2 ) ) A. v  e.  ( x
( ball `  D )
( s  /  2
) ) ( u D v )  < 
s )
35 raleq 3138 . . . . . . . . . 10  |-  ( y  =  ( x (
ball `  D )
( s  /  2
) )  ->  ( A. v  e.  y 
( u D v )  <  s  <->  A. v  e.  ( x ( ball `  D ) ( s  /  2 ) ) ( u D v )  <  s ) )
3635raleqbi1dv 3146 . . . . . . . . 9  |-  ( y  =  ( x (
ball `  D )
( s  /  2
) )  ->  ( A. u  e.  y  A. v  e.  y 
( u D v )  <  s  <->  A. u  e.  ( x ( ball `  D ) ( s  /  2 ) ) A. v  e.  ( x ( ball `  D
) ( s  / 
2 ) ) ( u D v )  <  s ) )
3736rspcev 3309 . . . . . . . 8  |-  ( ( ( x ( ball `  D ) ( s  /  2 ) )  e.  F  /\  A. u  e.  ( x
( ball `  D )
( s  /  2
) ) A. v  e.  ( x ( ball `  D ) ( s  /  2 ) ) ( u D v )  <  s )  ->  E. y  e.  F  A. u  e.  y  A. v  e.  y 
( u D v )  <  s )
3814, 34, 37syl2anc 693 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  RR+ )  /\  (
x  e.  X  /\  ( x ( ball `  D ) ( s  /  2 ) )  e.  F ) )  ->  E. y  e.  F  A. u  e.  y  A. v  e.  y 
( u D v )  <  s )
3938rexlimdvaa 3032 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  s  e.  RR+ )  ->  ( E. x  e.  X  ( x ( ball `  D
) ( s  / 
2 ) )  e.  F  ->  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  < 
s ) )
4013, 39syld 47 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  s  e.  RR+ )  ->  ( A. r  e.  RR+  E. x  e.  X  ( x
( ball `  D )
r )  e.  F  ->  E. y  e.  F  A. u  e.  y  A. v  e.  y 
( u D v )  <  s ) )
4140ralrimdva 2969 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Fil `  X ) )  ->  ( A. r  e.  RR+  E. x  e.  X  ( x
( ball `  D )
r )  e.  F  ->  A. s  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  (
u D v )  <  s ) )
4241impr 649 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) )  ->  A. s  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  <  s
)
43 iscfil2 23064 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. s  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  <  s
) ) )
4443adantr 481 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. s  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  <  s
) ) )
456, 42, 44mpbir2and 957 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) )  ->  F  e.  (CauFil `  D )
)
465, 45impbida 877 1  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  D )
r )  e.  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   RR*cxr 10073    < clt 10074    / cdiv 10684   2c2 11070   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   Filcfil 21649  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-psmet 19738  df-xmet 19739  df-bl 19741  df-fbas 19743  df-fil 21650  df-cfil 23053
This theorem is referenced by:  equivcfil  23097  flimcfil  23112
  Copyright terms: Public domain W3C validator