MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcfil Structured version   Visualization version   Unicode version

Theorem flimcfil 23112
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
lmcau.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
flimcfil  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  F  e.  (CauFil `  D ) )

Proof of Theorem flimcfil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  U. J  =  U. J
21flimfil 21773 . . . 4  |-  ( A  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
32adantl 482 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  F  e.  ( Fil `  U. J
) )
4 lmcau.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
54mopnuni 22246 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
65adantr 481 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  X  =  U. J )
76fveq2d 6195 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  ( Fil `  X )  =  ( Fil `  U. J
) )
83, 7eleqtrrd 2704 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  F  e.  ( Fil `  X ) )
91flimelbas 21772 . . . . . 6  |-  ( A  e.  ( J  fLim  F )  ->  A  e.  U. J )
109ad2antlr 763 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  A  e. 
U. J )
115ad2antrr 762 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  X  = 
U. J )
1210, 11eleqtrrd 2704 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  A  e.  X )
13 simplr 792 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  A  e.  ( J  fLim  F
) )
144mopntop 22245 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
1514ad2antrr 762 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  J  e. 
Top )
16 simpll 790 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  D  e.  ( *Met `  X ) )
17 rpxr 11840 . . . . . . . 8  |-  ( x  e.  RR+  ->  x  e. 
RR* )
1817adantl 482 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  x  e. 
RR* )
194blopn 22305 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  x  e.  RR* )  ->  ( A ( ball `  D ) x )  e.  J )
2016, 12, 18, 19syl3anc 1326 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  ( A ( ball `  D
) x )  e.  J )
21 simpr 477 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
22 blcntr 22218 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  x  e.  RR+ )  ->  A  e.  ( A ( ball `  D
) x ) )
2316, 12, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  A  e.  ( A ( ball `  D ) x ) )
24 opnneip 20923 . . . . . 6  |-  ( ( J  e.  Top  /\  ( A ( ball `  D
) x )  e.  J  /\  A  e.  ( A ( ball `  D ) x ) )  ->  ( A
( ball `  D )
x )  e.  ( ( nei `  J
) `  { A } ) )
2515, 20, 23, 24syl3anc 1326 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  ( A ( ball `  D
) x )  e.  ( ( nei `  J
) `  { A } ) )
26 flimnei 21771 . . . . 5  |-  ( ( A  e.  ( J 
fLim  F )  /\  ( A ( ball `  D
) x )  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A ( ball `  D ) x )  e.  F )
2713, 25, 26syl2anc 693 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  ( A ( ball `  D
) x )  e.  F )
28 oveq1 6657 . . . . . 6  |-  ( y  =  A  ->  (
y ( ball `  D
) x )  =  ( A ( ball `  D ) x ) )
2928eleq1d 2686 . . . . 5  |-  ( y  =  A  ->  (
( y ( ball `  D ) x )  e.  F  <->  ( A
( ball `  D )
x )  e.  F
) )
3029rspcev 3309 . . . 4  |-  ( ( A  e.  X  /\  ( A ( ball `  D
) x )  e.  F )  ->  E. y  e.  X  ( y
( ball `  D )
x )  e.  F
)
3112, 27, 30syl2anc 693 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  ( J  fLim  F ) )  /\  x  e.  RR+ )  ->  E. y  e.  X  ( y
( ball `  D )
x )  e.  F
)
3231ralrimiva 2966 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  A. x  e.  RR+  E. y  e.  X  ( y (
ball `  D )
x )  e.  F
)
33 iscfil3 23071 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  X  ( y (
ball `  D )
x )  e.  F
) ) )
3433adantr 481 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  ( F  e.  (CauFil `  D )  <->  ( F  e.  ( Fil `  X )  /\  A. x  e.  RR+  E. y  e.  X  ( y
( ball `  D )
x )  e.  F
) ) )
358, 32, 34mpbir2and 957 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  ( J  fLim  F )
)  ->  F  e.  (CauFil `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   RR*cxr 10073   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   Topctop 20698   neicnei 20901   Filcfil 21649    fLim cflim 21738  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-fbas 19743  df-top 20699  df-topon 20716  df-bases 20750  df-nei 20902  df-fil 21650  df-flim 21743  df-cfil 23053
This theorem is referenced by:  cmetss  23113  fmcncfil  29977
  Copyright terms: Public domain W3C validator