MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidldvgen Structured version   Visualization version   Unicode version

Theorem lidldvgen 19255
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidldvgen.b  |-  B  =  ( Base `  R
)
lidldvgen.u  |-  U  =  (LIdeal `  R )
lidldvgen.k  |-  K  =  (RSpan `  R )
lidldvgen.d  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
lidldvgen  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
I  =  ( K `
 { G }
)  <->  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) ) )
Distinct variable groups:    x, U    x, B    x,  .||    x, R    x, I    x, K    x, G

Proof of Theorem lidldvgen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  R  e.  Ring )
2 simp3 1063 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  G  e.  B )
32snssd 4340 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  { G }  C_  B )
4 lidldvgen.k . . . . . . 7  |-  K  =  (RSpan `  R )
5 lidldvgen.b . . . . . . 7  |-  B  =  ( Base `  R
)
64, 5rspssid 19223 . . . . . 6  |-  ( ( R  e.  Ring  /\  { G }  C_  B )  ->  { G }  C_  ( K `  { G } ) )
71, 3, 6syl2anc 693 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  { G }  C_  ( K `  { G } ) )
8 snssg 4327 . . . . . 6  |-  ( G  e.  B  ->  ( G  e.  ( K `  { G } )  <->  { G }  C_  ( K `  { G } ) ) )
983ad2ant3 1084 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  ( G  e.  ( K `  { G } )  <->  { G }  C_  ( K `  { G } ) ) )
107, 9mpbird 247 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  G  e.  ( K `  { G } ) )
11 lidldvgen.d . . . . . . . . . 10  |-  .||  =  (
||r `  R )
125, 4, 11rspsn 19254 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
y  |  G  .||  y } )
13123adant2 1080 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  ( K `  { G } )  =  {
y  |  G  .||  y } )
1413eleq2d 2687 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  x  e.  { y  |  G  .||  y } ) )
15 vex 3203 . . . . . . . 8  |-  x  e. 
_V
16 breq2 4657 . . . . . . . 8  |-  ( y  =  x  ->  ( G  .||  y  <->  G  .||  x ) )
1715, 16elab 3350 . . . . . . 7  |-  ( x  e.  { y  |  G  .||  y }  <->  G 
.||  x )
1814, 17syl6bb 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  G  .||  x ) )
1918biimpd 219 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  ->  G  .||  x ) )
2019ralrimiv 2965 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  A. x  e.  ( K `  { G } ) G  .||  x )
2110, 20jca 554 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  ( G  e.  ( K `  { G } )  /\  A. x  e.  ( K `  { G } ) G  .||  x ) )
22 eleq2 2690 . . . 4  |-  ( I  =  ( K `  { G } )  -> 
( G  e.  I  <->  G  e.  ( K `  { G } ) ) )
23 raleq 3138 . . . 4  |-  ( I  =  ( K `  { G } )  -> 
( A. x  e.  I  G  .||  x  <->  A. x  e.  ( K `  { G } ) G  .||  x ) )
2422, 23anbi12d 747 . . 3  |-  ( I  =  ( K `  { G } )  -> 
( ( G  e.  I  /\  A. x  e.  I  G  .||  x )  <-> 
( G  e.  ( K `  { G } )  /\  A. x  e.  ( K `  { G } ) G  .||  x )
) )
2521, 24syl5ibrcom 237 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
I  =  ( K `
 { G }
)  ->  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) ) )
26 df-ral 2917 . . . . . . . 8  |-  ( A. x  e.  I  G  .||  x  <->  A. x ( x  e.  I  ->  G  .||  x ) )
27 ssab 3672 . . . . . . . 8  |-  ( I 
C_  { x  |  G  .||  x }  <->  A. x ( x  e.  I  ->  G  .||  x ) )
2826, 27bitr4i 267 . . . . . . 7  |-  ( A. x  e.  I  G  .||  x  <->  I  C_  { x  |  G  .||  x }
)
2928biimpi 206 . . . . . 6  |-  ( A. x  e.  I  G  .||  x  ->  I  C_  { x  |  G  .||  x }
)
3029ad2antll 765 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) )  ->  I  C_  { x  |  G  .||  x }
)
315, 4, 11rspsn 19254 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
32313adant2 1080 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
3332adantr 481 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) )  ->  ( K `  { G } )  =  { x  |  G  .||  x } )
3430, 33sseqtr4d 3642 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) )  ->  I  C_  ( K `  { G } ) )
35 simpl1 1064 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  G  e.  I
)  ->  R  e.  Ring )
36 simpl2 1065 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  G  e.  I
)  ->  I  e.  U )
37 snssi 4339 . . . . . . 7  |-  ( G  e.  I  ->  { G }  C_  I )
3837adantl 482 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  G  e.  I
)  ->  { G }  C_  I )
39 lidldvgen.u . . . . . . 7  |-  U  =  (LIdeal `  R )
404, 39rspssp 19226 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  { G }  C_  I )  -> 
( K `  { G } )  C_  I
)
4135, 36, 38, 40syl3anc 1326 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  G  e.  I
)  ->  ( K `  { G } ) 
C_  I )
4241adantrr 753 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) )  ->  ( K `  { G } )  C_  I )
4334, 42eqssd 3620 . . 3  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  /\  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) )  ->  I  =  ( K `  { G } ) )
4443ex 450 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
( G  e.  I  /\  A. x  e.  I  G  .||  x )  ->  I  =  ( K `  { G } ) ) )
4525, 44impbid 202 1  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  e.  B )  ->  (
I  =  ( K `
 { G }
)  <->  ( G  e.  I  /\  A. x  e.  I  G  .||  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888   Basecbs 15857   Ringcrg 18547   ||rcdsr 18638  LIdealclidl 19170  RSpancrsp 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-dvdsr 18641  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175
This theorem is referenced by:  lpigen  19256  ig1prsp  23937
  Copyright terms: Public domain W3C validator