Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlidlring Structured version   Visualization version   Unicode version

Theorem zlidlring 41928
Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l  |-  L  =  (LIdeal `  R )
lidlabl.i  |-  I  =  ( Rs  U )
zlidlring.b  |-  B  =  ( Base `  R
)
zlidlring.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
zlidlring  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  I  e.  Ring )

Proof of Theorem zlidlring
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  R  e.  Ring )
2 lidlabl.l . . . . . . . 8  |-  L  =  (LIdeal `  R )
3 zlidlring.0 . . . . . . . 8  |-  .0.  =  ( 0g `  R )
42, 3lidl0 19219 . . . . . . 7  |-  ( R  e.  Ring  ->  {  .0.  }  e.  L )
54adantr 481 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  {  .0.  }  e.  L )
6 eleq1 2689 . . . . . . 7  |-  ( U  =  {  .0.  }  ->  ( U  e.  L  <->  {  .0.  }  e.  L
) )
76adantl 482 . . . . . 6  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( U  e.  L  <->  {  .0.  }  e.  L ) )
85, 7mpbird 247 . . . . 5  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  U  e.  L
)
91, 8jca 554 . . . 4  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( R  e. 
Ring  /\  U  e.  L
) )
10 lidlabl.i . . . . 5  |-  I  =  ( Rs  U )
112, 10lidlrng 41927 . . . 4  |-  ( ( R  e.  Ring  /\  U  e.  L )  ->  I  e. Rng )
129, 11syl 17 . . 3  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  I  e. Rng )
13 eleq1 2689 . . . . . . 7  |-  ( {  .0.  }  =  U  ->  ( {  .0.  }  e.  L  <->  U  e.  L ) )
1413eqcoms 2630 . . . . . 6  |-  ( U  =  {  .0.  }  ->  ( {  .0.  }  e.  L  <->  U  e.  L
) )
1514adantl 482 . . . . 5  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( {  .0.  }  e.  L  <->  U  e.  L ) )
16 id 22 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. 
Ring )
17 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  R )  =  (
Base `  R )
1817, 3ring0cl 18569 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
1916, 18jca 554 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( R  e.  Ring  /\  .0.  e.  ( Base `  R )
) )
20 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
2117, 20, 3ringlz 18587 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  .0.  e.  ( Base `  R
) )  ->  (  .0.  ( .r `  R
)  .0.  )  =  .0.  )
2221, 21jca 554 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  .0.  e.  ( Base `  R
) )  ->  (
(  .0.  ( .r
`  R )  .0.  )  =  .0.  /\  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) )
2319, 22syl 17 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( (  .0.  ( .r `  R )  .0.  )  =  .0.  /\  (  .0.  ( .r `  R
)  .0.  )  =  .0.  ) )
24 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 0g
`  R )  e. 
_V
253, 24eqeltri 2697 . . . . . . . . . . . . 13  |-  .0.  e.  _V
2625a1i 11 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  .0.  e.  _V )
27 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( y  =  .0.  ->  (  .0.  ( .r `  R
) y )  =  (  .0.  ( .r
`  R )  .0.  ) )
28 id 22 . . . . . . . . . . . . . . 15  |-  ( y  =  .0.  ->  y  =  .0.  )
2927, 28eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( y  =  .0.  ->  (
(  .0.  ( .r
`  R ) y )  =  y  <->  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) )
30 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( y  =  .0.  ->  (
y ( .r `  R )  .0.  )  =  (  .0.  ( .r `  R )  .0.  ) )
3130, 28eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( y  =  .0.  ->  (
( y ( .r
`  R )  .0.  )  =  y  <->  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) )
3229, 31anbi12d 747 . . . . . . . . . . . . 13  |-  ( y  =  .0.  ->  (
( (  .0.  ( .r `  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y )  <-> 
( (  .0.  ( .r `  R )  .0.  )  =  .0.  /\  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) ) )
3332ralsng 4218 . . . . . . . . . . . 12  |-  (  .0. 
e.  _V  ->  ( A. y  e.  {  .0.  }  ( (  .0.  ( .r `  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y )  <-> 
( (  .0.  ( .r `  R )  .0.  )  =  .0.  /\  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) ) )
3426, 33syl 17 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( A. y  e.  {  .0.  }  ( (  .0.  ( .r `  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y )  <-> 
( (  .0.  ( .r `  R )  .0.  )  =  .0.  /\  (  .0.  ( .r `  R )  .0.  )  =  .0.  ) ) )
3523, 34mpbird 247 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  A. y  e.  {  .0.  }  (
(  .0.  ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y ) )
36 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( x  =  .0.  ->  (
x ( .r `  R ) y )  =  (  .0.  ( .r `  R ) y ) )
3736eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( x  =  .0.  ->  (
( x ( .r
`  R ) y )  =  y  <->  (  .0.  ( .r `  R ) y )  =  y ) )
38 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( x  =  .0.  ->  (
y ( .r `  R ) x )  =  ( y ( .r `  R )  .0.  ) )
3938eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( x  =  .0.  ->  (
( y ( .r
`  R ) x )  =  y  <->  ( y
( .r `  R
)  .0.  )  =  y ) )
4037, 39anbi12d 747 . . . . . . . . . . . . 13  |-  ( x  =  .0.  ->  (
( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y )  <->  ( (  .0.  ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
)  .0.  )  =  y ) ) )
4140ralbidv 2986 . . . . . . . . . . . 12  |-  ( x  =  .0.  ->  ( A. y  e.  {  .0.  }  ( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y )  <->  A. y  e.  {  .0.  }  ( (  .0.  ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
)  .0.  )  =  y ) ) )
4241rexsng 4219 . . . . . . . . . . 11  |-  (  .0. 
e.  _V  ->  ( E. x  e.  {  .0.  } A. y  e.  {  .0.  }  ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y )  <->  A. y  e.  {  .0.  }  (
(  .0.  ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y ) ) )
4326, 42syl 17 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( E. x  e.  {  .0.  } A. y  e.  {  .0.  }  ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y )  <->  A. y  e.  {  .0.  }  (
(  .0.  ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R )  .0.  )  =  y ) ) )
4435, 43mpbird 247 . . . . . . . . 9  |-  ( R  e.  Ring  ->  E. x  e.  {  .0.  } A. y  e.  {  .0.  }  ( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) )
4544adantr 481 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  E. x  e.  {  .0.  } A. y  e. 
{  .0.  }  (
( x ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R ) x )  =  y ) )
4645adantr 481 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  E. x  e.  {  .0.  } A. y  e.  {  .0.  }  ( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) )
47 simpr 477 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  U  e.  L )
482, 10lidlbas 41923 . . . . . . . . . 10  |-  ( U  e.  L  ->  ( Base `  I )  =  U )
4947, 48syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  ( Base `  I )  =  U )
50 simpr 477 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  U  =  {  .0.  } )
5150adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  U  =  {  .0.  } )
5249, 51eqtrd 2656 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  ( Base `  I )  =  {  .0.  } )
5310, 20ressmulr 16006 . . . . . . . . . . . . . 14  |-  ( U  e.  L  ->  ( .r `  R )  =  ( .r `  I
) )
5453eqcomd 2628 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( .r `  I )  =  ( .r `  R
) )
5554adantl 482 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  ( .r `  I )  =  ( .r `  R
) )
5655oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  (
x ( .r `  I ) y )  =  ( x ( .r `  R ) y ) )
5756eqeq1d 2624 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  (
( x ( .r
`  I ) y )  =  y  <->  ( x
( .r `  R
) y )  =  y ) )
5855oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  (
y ( .r `  I ) x )  =  ( y ( .r `  R ) x ) )
5958eqeq1d 2624 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  (
( y ( .r
`  I ) x )  =  y  <->  ( y
( .r `  R
) x )  =  y ) )
6057, 59anbi12d 747 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  (
( ( x ( .r `  I ) y )  =  y  /\  ( y ( .r `  I ) x )  =  y )  <->  ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y ) ) )
6152, 60raleqbidv 3152 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  ( A. y  e.  ( Base `  I ) ( ( x ( .r
`  I ) y )  =  y  /\  ( y ( .r
`  I ) x )  =  y )  <->  A. y  e.  {  .0.  }  ( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) ) )
6252, 61rexeqbidv 3153 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  ( E. x  e.  ( Base `  I ) A. y  e.  ( Base `  I ) ( ( x ( .r `  I ) y )  =  y  /\  (
y ( .r `  I ) x )  =  y )  <->  E. x  e.  {  .0.  } A. y  e.  {  .0.  }  ( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) ) )
6346, 62mpbird 247 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  U  =  {  .0.  } )  /\  U  e.  L )  ->  E. x  e.  ( Base `  I
) A. y  e.  ( Base `  I
) ( ( x ( .r `  I
) y )  =  y  /\  ( y ( .r `  I
) x )  =  y ) )
6463ex 450 . . . . 5  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( U  e.  L  ->  E. x  e.  ( Base `  I
) A. y  e.  ( Base `  I
) ( ( x ( .r `  I
) y )  =  y  /\  ( y ( .r `  I
) x )  =  y ) ) )
6515, 64sylbid 230 . . . 4  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( {  .0.  }  e.  L  ->  E. x  e.  ( Base `  I
) A. y  e.  ( Base `  I
) ( ( x ( .r `  I
) y )  =  y  /\  ( y ( .r `  I
) x )  =  y ) ) )
665, 65mpd 15 . . 3  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  E. x  e.  (
Base `  I ) A. y  e.  ( Base `  I ) ( ( x ( .r
`  I ) y )  =  y  /\  ( y ( .r
`  I ) x )  =  y ) )
6712, 66jca 554 . 2  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  ( I  e. Rng  /\  E. x  e.  (
Base `  I ) A. y  e.  ( Base `  I ) ( ( x ( .r
`  I ) y )  =  y  /\  ( y ( .r
`  I ) x )  =  y ) ) )
68 eqid 2622 . . 3  |-  ( Base `  I )  =  (
Base `  I )
69 eqid 2622 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
7068, 69isringrng 41881 . 2  |-  ( I  e.  Ring  <->  ( I  e. Rng  /\  E. x  e.  (
Base `  I ) A. y  e.  ( Base `  I ) ( ( x ( .r
`  I ) y )  =  y  /\  ( y ( .r
`  I ) x )  =  y ) ) )
7167, 70sylibr 224 1  |-  ( ( R  e.  Ring  /\  U  =  {  .0.  } )  ->  I  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   0gc0g 16100   Ringcrg 18547  LIdealclidl 19170  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rng0 41875
This theorem is referenced by:  uzlidlring  41929
  Copyright terms: Public domain W3C validator