![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lveclmod | Structured version Visualization version Unicode version |
Description: A left vector space is a left module. (Contributed by NM, 9-Dec-2013.) |
Ref | Expression |
---|---|
lveclmod |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | islvec 19104 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simplbi 476 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-lvec 19103 |
This theorem is referenced by: lsslvec 19107 lvecvs0or 19108 lssvs0or 19110 lvecvscan 19111 lvecvscan2 19112 lvecinv 19113 lspsnvs 19114 lspsneleq 19115 lspsncmp 19116 lspsnne1 19117 lspsnnecom 19119 lspabs2 19120 lspabs3 19121 lspsneq 19122 lspsnel4 19124 lspdisj 19125 lspdisjb 19126 lspdisj2 19127 lspfixed 19128 lspexch 19129 lspexchn1 19130 lspindpi 19132 lvecindp 19138 lvecindp2 19139 lsmcv 19141 lspsolv 19143 lssacsex 19144 lspsnat 19145 lsppratlem2 19148 lsppratlem3 19149 lsppratlem4 19150 lsppratlem6 19152 lspprat 19153 islbs2 19154 islbs3 19155 lbsacsbs 19156 lbsextlem2 19159 lbsextlem3 19160 lbsextlem4 19161 phllmod 19975 isphld 19999 islinds4 20174 lvecisfrlm 20182 cvsi 22930 lshpnelb 34271 lshpnel2N 34272 lshpdisj 34274 lshpcmp 34275 lsatcmp 34290 lsatcmp2 34291 lsatel 34292 lsatelbN 34293 lsatfixedN 34296 lsmcv2 34316 lsatcv0 34318 lsatcveq0 34319 lsat0cv 34320 lcvp 34327 lcv1 34328 lcv2 34329 lsatexch 34330 lsatnem0 34332 lsatexch1 34333 lsatcv0eq 34334 lsatcv1 34335 lsatcvatlem 34336 lsatcvat 34337 lsatcvat2 34338 lsatcvat3 34339 islshpcv 34340 l1cvpat 34341 l1cvat 34342 lfl1 34357 lkrsc 34384 lkrscss 34385 eqlkr 34386 eqlkr3 34388 lkrlsp 34389 lkrlsp3 34391 lkrshp 34392 lkrshp3 34393 lkrshpor 34394 lkrshp4 34395 lshpsmreu 34396 lshpkrlem1 34397 lshpkrlem4 34400 lshpkrlem5 34401 lshpkrlem6 34402 lshpkr 34404 lshpkrex 34405 lfl1dim 34408 lfl1dim2N 34409 lduallvec 34441 lduallkr3 34449 lkrpssN 34450 ldual1dim 34453 lkrss2N 34456 lkreqN 34457 lkrlspeqN 34458 dva0g 36316 dia1dim2 36351 dia1dimid 36352 dia2dimlem5 36357 dia2dimlem7 36359 dia2dimlem9 36361 dia2dimlem10 36362 dia2dimlem13 36365 dvhlmod 36399 diblsmopel 36460 lclkrlem2m 36808 lclkrlem2n 36809 lcfrlem1 36831 lcfrlem2 36832 lcfrlem3 36833 lcdlmod 36881 baerlem3lem1 36996 baerlem5alem1 36997 baerlem5blem1 36998 baerlem3lem2 36999 baerlem5alem2 37000 baerlem5blem2 37001 baerlem5amN 37005 baerlem5bmN 37006 baerlem5abmN 37007 mapdindp0 37008 mapdindp1 37009 mapdindp2 37010 mapdindp3 37011 mapdindp4 37012 lspindp5 37059 lincreslvec3 42271 isldepslvec2 42274 lindssnlvec 42275 lvecpsslmod 42296 |
Copyright terms: Public domain | W3C validator |