Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfval Structured version   Visualization version   Unicode version

Theorem lmatfval 29880
Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmatfval.m  |-  M  =  (litMat `  W )
lmatfval.n  |-  ( ph  ->  N  e.  NN )
lmatfval.w  |-  ( ph  ->  W  e. Word Word  V )
lmatfval.1  |-  ( ph  ->  ( # `  W
)  =  N )
lmatfval.2  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `  i )
)  =  N )
lmatfval.i  |-  ( ph  ->  I  e.  ( 1 ... N ) )
lmatfval.j  |-  ( ph  ->  J  e.  ( 1 ... N ) )
Assertion
Ref Expression
lmatfval  |-  ( ph  ->  ( I M J )  =  ( ( W `  ( I  -  1 ) ) `
 ( J  - 
1 ) ) )
Distinct variable groups:    i, M    i, I    i, J    i, N    i, W    ph, i
Allowed substitution hint:    V( i)

Proof of Theorem lmatfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . 3  |-  M  =  (litMat `  W )
2 lmatfval.w . . . 4  |-  ( ph  ->  W  e. Word Word  V )
3 lmatval 29879 . . . 4  |-  ( W  e. Word Word  V  ->  (litMat `  W )  =  ( i  e.  ( 1 ... ( # `  W
) ) ,  j  e.  ( 1 ... ( # `  ( W `  0 )
) )  |->  ( ( W `  ( i  -  1 ) ) `
 ( j  - 
1 ) ) ) )
42, 3syl 17 . . 3  |-  ( ph  ->  (litMat `  W )  =  ( i  e.  ( 1 ... ( # `
 W ) ) ,  j  e.  ( 1 ... ( # `  ( W `  0
) ) )  |->  ( ( W `  (
i  -  1 ) ) `  ( j  -  1 ) ) ) )
51, 4syl5eq 2668 . 2  |-  ( ph  ->  M  =  ( i  e.  ( 1 ... ( # `  W
) ) ,  j  e.  ( 1 ... ( # `  ( W `  0 )
) )  |->  ( ( W `  ( i  -  1 ) ) `
 ( j  - 
1 ) ) ) )
6 simprl 794 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
i  =  I )
76oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
( i  -  1 )  =  ( I  -  1 ) )
87fveq2d 6195 . . 3  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
( W `  (
i  -  1 ) )  =  ( W `
 ( I  - 
1 ) ) )
9 simprr 796 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
j  =  J )
109oveq1d 6665 . . 3  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
( j  -  1 )  =  ( J  -  1 ) )
118, 10fveq12d 6197 . 2  |-  ( (
ph  /\  ( i  =  I  /\  j  =  J ) )  -> 
( ( W `  ( i  -  1 ) ) `  (
j  -  1 ) )  =  ( ( W `  ( I  -  1 ) ) `
 ( J  - 
1 ) ) )
12 lmatfval.i . . 3  |-  ( ph  ->  I  e.  ( 1 ... N ) )
13 lmatfval.1 . . . 4  |-  ( ph  ->  ( # `  W
)  =  N )
1413oveq2d 6666 . . 3  |-  ( ph  ->  ( 1 ... ( # `
 W ) )  =  ( 1 ... N ) )
1512, 14eleqtrrd 2704 . 2  |-  ( ph  ->  I  e.  ( 1 ... ( # `  W
) ) )
16 lmatfval.j . . 3  |-  ( ph  ->  J  e.  ( 1 ... N ) )
17 1m1e0 11089 . . . . . 6  |-  ( 1  -  1 )  =  0
18 lmatfval.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
19 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
2018, 19syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
21 eluzfz1 12348 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
2220, 21syl 17 . . . . . . 7  |-  ( ph  ->  1  e.  ( 1 ... N ) )
23 fz1fzo0m1 12515 . . . . . . 7  |-  ( 1  e.  ( 1 ... N )  ->  (
1  -  1 )  e.  ( 0..^ N ) )
2422, 23syl 17 . . . . . 6  |-  ( ph  ->  ( 1  -  1 )  e.  ( 0..^ N ) )
2517, 24syl5eqelr 2706 . . . . 5  |-  ( ph  ->  0  e.  ( 0..^ N ) )
26 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  i  = 
0 )  ->  i  =  0 )
2726eleq1d 2686 . . . . . . 7  |-  ( (
ph  /\  i  = 
0 )  ->  (
i  e.  ( 0..^ N )  <->  0  e.  ( 0..^ N ) ) )
2826fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  i  = 
0 )  ->  ( W `  i )  =  ( W ` 
0 ) )
2928fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  i  = 
0 )  ->  ( # `
 ( W `  i ) )  =  ( # `  ( W `  0 )
) )
3029eqeq1d 2624 . . . . . . 7  |-  ( (
ph  /\  i  = 
0 )  ->  (
( # `  ( W `
 i ) )  =  N  <->  ( # `  ( W `  0 )
)  =  N ) )
3127, 30imbi12d 334 . . . . . 6  |-  ( (
ph  /\  i  = 
0 )  ->  (
( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N )  <->  ( 0  e.  ( 0..^ N )  ->  ( # `  ( W `  0 )
)  =  N ) ) )
32 lmatfval.2 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `  i )
)  =  N )
3332ex 450 . . . . . 6  |-  ( ph  ->  ( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N ) )
3425, 31, 33vtocld 3257 . . . . 5  |-  ( ph  ->  ( 0  e.  ( 0..^ N )  -> 
( # `  ( W `
 0 ) )  =  N ) )
3525, 34mpd 15 . . . 4  |-  ( ph  ->  ( # `  ( W `  0 )
)  =  N )
3635oveq2d 6666 . . 3  |-  ( ph  ->  ( 1 ... ( # `
 ( W ` 
0 ) ) )  =  ( 1 ... N ) )
3716, 36eleqtrrd 2704 . 2  |-  ( ph  ->  J  e.  ( 1 ... ( # `  ( W `  0 )
) ) )
38 fz1fzo0m1 12515 . . . . . 6  |-  ( I  e.  ( 1 ... N )  ->  (
I  -  1 )  e.  ( 0..^ N ) )
3912, 38syl 17 . . . . 5  |-  ( ph  ->  ( I  -  1 )  e.  ( 0..^ N ) )
4013oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ N ) )
4139, 40eleqtrrd 2704 . . . 4  |-  ( ph  ->  ( I  -  1 )  e.  ( 0..^ ( # `  W
) ) )
42 wrdsymbcl 13318 . . . 4  |-  ( ( W  e. Word Word  V  /\  ( I  -  1
)  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  (
I  -  1 ) )  e. Word  V )
432, 41, 42syl2anc 693 . . 3  |-  ( ph  ->  ( W `  (
I  -  1 ) )  e. Word  V )
44 fz1fzo0m1 12515 . . . . 5  |-  ( J  e.  ( 1 ... N )  ->  ( J  -  1 )  e.  ( 0..^ N ) )
4516, 44syl 17 . . . 4  |-  ( ph  ->  ( J  -  1 )  e.  ( 0..^ N ) )
46 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  i  =  ( I  - 
1 ) )
4746eleq1d 2686 . . . . . . . 8  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  (
i  e.  ( 0..^ N )  <->  ( I  -  1 )  e.  ( 0..^ N ) ) )
4846fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  ( W `  i )  =  ( W `  ( I  -  1
) ) )
4948fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  ( # `
 ( W `  i ) )  =  ( # `  ( W `  ( I  -  1 ) ) ) )
5049eqeq1d 2624 . . . . . . . 8  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  (
( # `  ( W `
 i ) )  =  N  <->  ( # `  ( W `  ( I  -  1 ) ) )  =  N ) )
5147, 50imbi12d 334 . . . . . . 7  |-  ( (
ph  /\  i  =  ( I  -  1
) )  ->  (
( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N )  <->  ( (
I  -  1 )  e.  ( 0..^ N )  ->  ( # `  ( W `  ( I  -  1 ) ) )  =  N ) ) )
5239, 51, 33vtocld 3257 . . . . . 6  |-  ( ph  ->  ( ( I  - 
1 )  e.  ( 0..^ N )  -> 
( # `  ( W `
 ( I  - 
1 ) ) )  =  N ) )
5339, 52mpd 15 . . . . 5  |-  ( ph  ->  ( # `  ( W `  ( I  -  1 ) ) )  =  N )
5453oveq2d 6666 . . . 4  |-  ( ph  ->  ( 0..^ ( # `  ( W `  (
I  -  1 ) ) ) )  =  ( 0..^ N ) )
5545, 54eleqtrrd 2704 . . 3  |-  ( ph  ->  ( J  -  1 )  e.  ( 0..^ ( # `  ( W `  ( I  -  1 ) ) ) ) )
56 wrdsymbcl 13318 . . 3  |-  ( ( ( W `  (
I  -  1 ) )  e. Word  V  /\  ( J  -  1
)  e.  ( 0..^ ( # `  ( W `  ( I  -  1 ) ) ) ) )  -> 
( ( W `  ( I  -  1
) ) `  ( J  -  1 ) )  e.  V )
5743, 55, 56syl2anc 693 . 2  |-  ( ph  ->  ( ( W `  ( I  -  1
) ) `  ( J  -  1 ) )  e.  V )
585, 11, 15, 37, 57ovmpt2d 6788 1  |-  ( ph  ->  ( I M J )  =  ( ( W `  ( I  -  1 ) ) `
 ( J  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  litMatclmat 29877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lmat 29878
This theorem is referenced by:  lmatfvlem  29881  lmat22e11  29884
  Copyright terms: Public domain W3C validator