![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version Unicode version |
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
Ref | Expression |
---|---|
lmatfval.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfval.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfval.w |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfval.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfval.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfvlem.1 |
![]() ![]() ![]() ![]() |
lmatfvlem.2 |
![]() ![]() ![]() ![]() |
lmatfvlem.3 |
![]() ![]() ![]() ![]() |
lmatfvlem.4 |
![]() ![]() ![]() ![]() |
lmatfvlem.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfvlem.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfvlem.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmatfvlem.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lmatfvlem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lmatfval.n |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | lmatfval.w |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | lmatfval.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | lmatfval.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lmatfvlem.5 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | lmatfvlem.1 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
8 | nn0p1nn 11332 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 6, 9 | eqeltrri 2698 |
. . . . . . 7
![]() ![]() ![]() ![]() |
11 | nnge1 11046 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() |
13 | lmatfvlem.3 |
. . . . . 6
![]() ![]() ![]() ![]() | |
14 | 12, 13 | pm3.2i 471 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14 | a1i 11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | nnz 11399 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 10, 16 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() |
18 | 17 | a1i 11 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 1z 11407 |
. . . . . 6
![]() ![]() ![]() ![]() | |
20 | 19 | a1i 11 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 2 | nnzd 11481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | elfz 12332 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 18, 20, 21, 22 | syl3anc 1326 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 15, 23 | mpbird 247 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | lmatfvlem.6 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | lmatfvlem.2 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
27 | nn0p1nn 11332 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | 26, 27 | ax-mp 5 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 25, 28 | eqeltrri 2698 |
. . . . . . 7
![]() ![]() ![]() ![]() |
30 | nnge1 11046 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() |
32 | lmatfvlem.4 |
. . . . . 6
![]() ![]() ![]() ![]() | |
33 | 31, 32 | pm3.2i 471 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33 | a1i 11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | nnz 11399 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 29, 35 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() |
37 | 36 | a1i 11 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | elfz 12332 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 37, 20, 21, 38 | syl3anc 1326 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 34, 39 | mpbird 247 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 29880 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 7 | nn0cni 11304 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
43 | ax-1cn 9994 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
44 | 42, 43 | pncan3oi 10297 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 6 | oveq1i 6660 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 44, 45 | eqtr3i 2646 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 46 | fveq2i 6194 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | lmatfvlem.7 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
49 | 47, 48 | eqtr3i 2646 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 49 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 50 | fveq1d 6193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 26 | nn0cni 11304 |
. . . . . . 7
![]() ![]() ![]() ![]() |
53 | 52, 43 | pncan3oi 10297 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 25 | oveq1i 6660 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 53, 54 | eqtr3i 2646 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 55 | a1i 11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | 56 | fveq2d 6195 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | lmatfvlem.8 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
59 | 57, 58 | eqtr3d 2658 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
60 | 41, 51, 59 | 3eqtrd 2660 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-lmat 29878 |
This theorem is referenced by: lmat22e12 29885 lmat22e21 29886 lmat22e22 29887 |
Copyright terms: Public domain | W3C validator |