| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvneg1 | Structured version Visualization version Unicode version | ||
| Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvneg1.v |
|
| lmodvneg1.n |
|
| lmodvneg1.f |
|
| lmodvneg1.s |
|
| lmodvneg1.u |
|
| lmodvneg1.m |
|
| Ref | Expression |
|---|---|
| lmodvneg1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . 4
| |
| 2 | lmodvneg1.f |
. . . . . . 7
| |
| 3 | 2 | lmodfgrp 18872 |
. . . . . 6
|
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | eqid 2622 |
. . . . . . 7
| |
| 6 | lmodvneg1.u |
. . . . . . 7
| |
| 7 | 2, 5, 6 | lmod1cl 18890 |
. . . . . 6
|
| 8 | 7 | adantr 481 |
. . . . 5
|
| 9 | lmodvneg1.m |
. . . . . 6
| |
| 10 | 5, 9 | grpinvcl 17467 |
. . . . 5
|
| 11 | 4, 8, 10 | syl2anc 693 |
. . . 4
|
| 12 | simpr 477 |
. . . 4
| |
| 13 | lmodvneg1.v |
. . . . 5
| |
| 14 | lmodvneg1.s |
. . . . 5
| |
| 15 | 13, 2, 14, 5 | lmodvscl 18880 |
. . . 4
|
| 16 | 1, 11, 12, 15 | syl3anc 1326 |
. . 3
|
| 17 | eqid 2622 |
. . . 4
| |
| 18 | eqid 2622 |
. . . 4
| |
| 19 | 13, 17, 18 | lmod0vrid 18894 |
. . 3
|
| 20 | 16, 19 | syldan 487 |
. 2
|
| 21 | lmodvneg1.n |
. . . . . 6
| |
| 22 | 13, 21 | lmodvnegcl 18904 |
. . . . 5
|
| 23 | 13, 17 | lmodass 18878 |
. . . . 5
|
| 24 | 1, 16, 12, 22, 23 | syl13anc 1328 |
. . . 4
|
| 25 | 13, 2, 14, 6 | lmodvs1 18891 |
. . . . . . 7
|
| 26 | 25 | oveq2d 6666 |
. . . . . 6
|
| 27 | eqid 2622 |
. . . . . . . . . 10
| |
| 28 | eqid 2622 |
. . . . . . . . . 10
| |
| 29 | 5, 27, 28, 9 | grplinv 17468 |
. . . . . . . . 9
|
| 30 | 4, 8, 29 | syl2anc 693 |
. . . . . . . 8
|
| 31 | 30 | oveq1d 6665 |
. . . . . . 7
|
| 32 | 13, 17, 2, 14, 5, 27 | lmodvsdir 18887 |
. . . . . . . 8
|
| 33 | 1, 11, 8, 12, 32 | syl13anc 1328 |
. . . . . . 7
|
| 34 | 13, 2, 14, 28, 18 | lmod0vs 18896 |
. . . . . . 7
|
| 35 | 31, 33, 34 | 3eqtr3d 2664 |
. . . . . 6
|
| 36 | 26, 35 | eqtr3d 2658 |
. . . . 5
|
| 37 | 36 | oveq1d 6665 |
. . . 4
|
| 38 | 24, 37 | eqtr3d 2658 |
. . 3
|
| 39 | 13, 17, 18, 21 | lmodvnegid 18905 |
. . . 4
|
| 40 | 39 | oveq2d 6666 |
. . 3
|
| 41 | 13, 17, 18 | lmod0vlid 18893 |
. . . 4
|
| 42 | 22, 41 | syldan 487 |
. . 3
|
| 43 | 38, 40, 42 | 3eqtr3d 2664 |
. 2
|
| 44 | 20, 43 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 |
| This theorem is referenced by: lmodvsneg 18907 lmodvsubval2 18918 lssvnegcl 18956 lspsnneg 19006 lmodvsinv 19036 lspsolvlem 19142 tlmtgp 21999 clmvneg1 22899 deg1invg 23866 |
| Copyright terms: Public domain | W3C validator |