MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvneg1 Structured version   Visualization version   Unicode version

Theorem lmodvneg1 18906
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v  |-  V  =  ( Base `  W
)
lmodvneg1.n  |-  N  =  ( invg `  W )
lmodvneg1.f  |-  F  =  (Scalar `  W )
lmodvneg1.s  |-  .x.  =  ( .s `  W )
lmodvneg1.u  |-  .1.  =  ( 1r `  F )
lmodvneg1.m  |-  M  =  ( invg `  F )
Assertion
Ref Expression
lmodvneg1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvneg1.f . . . . . . 7  |-  F  =  (Scalar `  W )
32lmodfgrp 18872 . . . . . 6  |-  ( W  e.  LMod  ->  F  e. 
Grp )
43adantr 481 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
5 eqid 2622 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmodvneg1.u . . . . . . 7  |-  .1.  =  ( 1r `  F )
72, 5, 6lmod1cl 18890 . . . . . 6  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
87adantr 481 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
9 lmodvneg1.m . . . . . 6  |-  M  =  ( invg `  F )
105, 9grpinvcl 17467 . . . . 5  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
114, 8, 10syl2anc 693 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
12 simpr 477 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
13 lmodvneg1.v . . . . 5  |-  V  =  ( Base `  W
)
14 lmodvneg1.s . . . . 5  |-  .x.  =  ( .s `  W )
1513, 2, 14, 5lmodvscl 18880 . . . 4  |-  ( ( W  e.  LMod  /\  ( M `  .1.  )  e.  ( Base `  F
)  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
161, 11, 12, 15syl3anc 1326 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
17 eqid 2622 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
18 eqid 2622 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
1913, 17, 18lmod0vrid 18894 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  .x.  X )  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
2016, 19syldan 487 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
21 lmodvneg1.n . . . . . 6  |-  N  =  ( invg `  W )
2213, 21lmodvnegcl 18904 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  X )  e.  V )
2313, 17lmodass 18878 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( M `  .1.  )  .x.  X )  e.  V  /\  X  e.  V  /\  ( N `  X )  e.  V ) )  -> 
( ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
241, 16, 12, 22, 23syl13anc 1328 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
2513, 2, 14, 6lmodvs1 18891 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
2625oveq2d 6666 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) )
27 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
28 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
295, 27, 28, 9grplinv 17468 . . . . . . . . 9  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
304, 8, 29syl2anc 693 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
3130oveq1d 6665 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( 0g `  F
)  .x.  X )
)
3213, 17, 2, 14, 5, 27lmodvsdir 18887 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  e.  ( Base `  F )  /\  .1.  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( ( M `
 .1.  ) ( +g  `  F )  .1.  )  .x.  X
)  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) (  .1.  .x.  X
) ) )
331, 11, 8, 12, 32syl13anc 1328 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) ) )
3413, 2, 14, 28, 18lmod0vs 18896 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3531, 33, 343eqtr3d 2664 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( 0g `  W
) )
3626, 35eqtr3d 2658 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) X )  =  ( 0g `  W
) )
3736oveq1d 6665 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3824, 37eqtr3d 2658 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3913, 17, 18, 21lmodvnegid 18905 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( N `  X ) )  =  ( 0g `  W
) )
4039oveq2d 6666 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( 0g
`  W ) ) )
4113, 17, 18lmod0vlid 18893 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4222, 41syldan 487 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4338, 40, 423eqtr3d 2664 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( N `  X
) )
4420, 43eqtr3d 2658 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   1rcur 18501   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lmodvsneg  18907  lmodvsubval2  18918  lssvnegcl  18956  lspsnneg  19006  lmodvsinv  19036  lspsolvlem  19142  tlmtgp  21999  clmvneg1  22899  deg1invg  23866
  Copyright terms: Public domain W3C validator