MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnneg Structured version   Visualization version   Unicode version

Theorem lspsnneg 19006
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v  |-  V  =  ( Base `  W
)
lspsnneg.m  |-  M  =  ( invg `  W )
lspsnneg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnneg  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lspsnneg.m . . . . . 6  |-  M  =  ( invg `  W )
3 eqid 2622 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2622 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2622 . . . . . 6  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
6 eqid 2622 . . . . . 6  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
71, 2, 3, 4, 5, 6lmodvneg1 18906 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X )  =  ( M `
 X ) )
87sneqd 4189 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) }  =  {
( M `  X
) } )
98fveq2d 6195 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  =  ( N `  {
( M `  X
) } ) )
10 simpl 473 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
113lmodfgrp 18872 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
12 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
133, 12, 5lmod1cl 18890 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
1412, 6grpinvcl 17467 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
1511, 13, 14syl2anc 693 . . . . 5  |-  ( W  e.  LMod  ->  ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
1615adantr 481 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
17 simpr 477 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
18 lspsnneg.n . . . . 5  |-  N  =  ( LSpan `  W )
193, 12, 1, 4, 18lspsnvsi 19004 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
2010, 16, 17, 19syl3anc 1326 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
219, 20eqsstr3d 3640 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  C_  ( N `  { X } ) )
221, 2lmodvnegcl 18904 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  X )  e.  V )
231, 2, 3, 4, 5, 6lmodvneg1 18906 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( M `  X )  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
2422, 23syldan 487 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
25 lmodgrp 18870 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
261, 2grpinvinv 17482 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( M `  ( M `  X )
)  =  X )
2725, 26sylan 488 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  ( M `  X ) )  =  X )
2824, 27eqtrd 2656 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  X )
2928sneqd 4189 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) }  =  { X } )
3029fveq2d 6195 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  =  ( N `  { X } ) )
313, 12, 1, 4, 18lspsnvsi 19004 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  ( M `  X )  e.  V
)  ->  ( N `  { ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3210, 16, 22, 31syl3anc 1326 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3330, 32eqsstr3d 3640 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( M `  X ) } ) )
3421, 33eqssd 3620 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422   invgcminusg 17423   1rcur 18501   LModclmod 18863   LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspsnsub  19007  lmodindp1  19014  lspsntrim  19098  baerlem5amN  37005  baerlem5bmN  37006  baerlem5abmN  37007  hdmap1neglem1N  37117
  Copyright terms: Public domain W3C validator