MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmhash Structured version   Visualization version   Unicode version

Theorem lsmhash 18118
Description: The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmhash.p  |-  .(+)  =  (
LSSum `  G )
lsmhash.o  |-  .0.  =  ( 0g `  G )
lsmhash.z  |-  Z  =  (Cntz `  G )
lsmhash.t  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
lsmhash.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
lsmhash.i  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
lsmhash.s  |-  ( ph  ->  T  C_  ( Z `  U ) )
lsmhash.1  |-  ( ph  ->  T  e.  Fin )
lsmhash.2  |-  ( ph  ->  U  e.  Fin )
Assertion
Ref Expression
lsmhash  |-  ( ph  ->  ( # `  ( T  .(+)  U ) )  =  ( ( # `  T )  x.  ( # `
 U ) ) )

Proof of Theorem lsmhash
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . . . 4  |-  ( ph  ->  ( T  .(+)  U )  e.  _V )
2 lsmhash.t . . . . 5  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
3 lsmhash.u . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
4 xpexg 6960 . . . . 5  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  ->  ( T  X.  U )  e.  _V )
52, 3, 4syl2anc 693 . . . 4  |-  ( ph  ->  ( T  X.  U
)  e.  _V )
6 eqid 2622 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
7 lsmhash.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  G )
8 lsmhash.o . . . . . . . 8  |-  .0.  =  ( 0g `  G )
9 lsmhash.z . . . . . . . 8  |-  Z  =  (Cntz `  G )
10 lsmhash.i . . . . . . . 8  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
11 lsmhash.s . . . . . . . 8  |-  ( ph  ->  T  C_  ( Z `  U ) )
12 eqid 2622 . . . . . . . 8  |-  ( proj1 `  G )  =  ( proj1 `  G )
136, 7, 8, 9, 2, 3, 10, 11, 12pj1f 18110 . . . . . . 7  |-  ( ph  ->  ( T ( proj1 `  G ) U ) : ( T  .(+)  U ) --> T )
1413ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( T  .(+)  U ) )  ->  ( ( T ( proj1 `  G ) U ) `
 x )  e.  T )
156, 7, 8, 9, 2, 3, 10, 11, 12pj2f 18111 . . . . . . 7  |-  ( ph  ->  ( U ( proj1 `  G ) T ) : ( T  .(+)  U ) --> U )
1615ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( T  .(+)  U ) )  ->  ( ( U ( proj1 `  G ) T ) `
 x )  e.  U )
17 opelxpi 5148 . . . . . 6  |-  ( ( ( ( T (
proj1 `  G
) U ) `  x )  e.  T  /\  ( ( U (
proj1 `  G
) T ) `  x )  e.  U
)  ->  <. ( ( T ( proj1 `  G ) U ) `
 x ) ,  ( ( U (
proj1 `  G
) T ) `  x ) >.  e.  ( T  X.  U ) )
1814, 16, 17syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  ( T  .(+)  U ) )  ->  <. ( ( T ( proj1 `  G ) U ) `
 x ) ,  ( ( U (
proj1 `  G
) T ) `  x ) >.  e.  ( T  X.  U ) )
1918ex 450 . . . 4  |-  ( ph  ->  ( x  e.  ( T  .(+)  U )  -> 
<. ( ( T (
proj1 `  G
) U ) `  x ) ,  ( ( U ( proj1 `  G ) T ) `  x
) >.  e.  ( T  X.  U ) ) )
202, 3jca 554 . . . . . 6  |-  ( ph  ->  ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
) )
21 xp1st 7198 . . . . . . 7  |-  ( y  e.  ( T  X.  U )  ->  ( 1st `  y )  e.  T )
22 xp2nd 7199 . . . . . . 7  |-  ( y  e.  ( T  X.  U )  ->  ( 2nd `  y )  e.  U )
2321, 22jca 554 . . . . . 6  |-  ( y  e.  ( T  X.  U )  ->  (
( 1st `  y
)  e.  T  /\  ( 2nd `  y )  e.  U ) )
246, 7lsmelvali 18065 . . . . . 6  |-  ( ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )
)  /\  ( ( 1st `  y )  e.  T  /\  ( 2nd `  y )  e.  U
) )  ->  (
( 1st `  y
) ( +g  `  G
) ( 2nd `  y
) )  e.  ( T  .(+)  U )
)
2520, 23, 24syl2an 494 . . . . 5  |-  ( (
ph  /\  y  e.  ( T  X.  U
) )  ->  (
( 1st `  y
) ( +g  `  G
) ( 2nd `  y
) )  e.  ( T  .(+)  U )
)
2625ex 450 . . . 4  |-  ( ph  ->  ( y  e.  ( T  X.  U )  ->  ( ( 1st `  y ) ( +g  `  G ) ( 2nd `  y ) )  e.  ( T  .(+)  U ) ) )
272adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  T  e.  (SubGrp `  G )
)
283adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  U  e.  (SubGrp `  G )
)
2910adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  ( T  i^i  U )  =  {  .0.  } )
3011adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  T  C_  ( Z `  U
) )
31 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  x  e.  ( T  .(+)  U ) )
3221ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  ( 1st `  y )  e.  T )
3322ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  ( 2nd `  y )  e.  U )
346, 7, 8, 9, 27, 28, 29, 30, 12, 31, 32, 33pj1eq 18113 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  (
x  =  ( ( 1st `  y ) ( +g  `  G
) ( 2nd `  y
) )  <->  ( (
( T ( proj1 `  G ) U ) `  x
)  =  ( 1st `  y )  /\  (
( U ( proj1 `  G ) T ) `  x
)  =  ( 2nd `  y ) ) ) )
35 eqcom 2629 . . . . . . . 8  |-  ( ( ( T ( proj1 `  G ) U ) `  x
)  =  ( 1st `  y )  <->  ( 1st `  y )  =  ( ( T ( proj1 `  G ) U ) `  x
) )
36 eqcom 2629 . . . . . . . 8  |-  ( ( ( U ( proj1 `  G ) T ) `  x
)  =  ( 2nd `  y )  <->  ( 2nd `  y )  =  ( ( U ( proj1 `  G ) T ) `  x
) )
3735, 36anbi12i 733 . . . . . . 7  |-  ( ( ( ( T (
proj1 `  G
) U ) `  x )  =  ( 1st `  y )  /\  ( ( U ( proj1 `  G ) T ) `
 x )  =  ( 2nd `  y
) )  <->  ( ( 1st `  y )  =  ( ( T (
proj1 `  G
) U ) `  x )  /\  ( 2nd `  y )  =  ( ( U (
proj1 `  G
) T ) `  x ) ) )
3834, 37syl6bb 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  (
x  =  ( ( 1st `  y ) ( +g  `  G
) ( 2nd `  y
) )  <->  ( ( 1st `  y )  =  ( ( T (
proj1 `  G
) U ) `  x )  /\  ( 2nd `  y )  =  ( ( U (
proj1 `  G
) T ) `  x ) ) ) )
39 eqop 7208 . . . . . . 7  |-  ( y  e.  ( T  X.  U )  ->  (
y  =  <. (
( T ( proj1 `  G ) U ) `  x
) ,  ( ( U ( proj1 `  G ) T ) `
 x ) >.  <->  ( ( 1st `  y
)  =  ( ( T ( proj1 `  G ) U ) `
 x )  /\  ( 2nd `  y )  =  ( ( U ( proj1 `  G ) T ) `
 x ) ) ) )
4039ad2antll 765 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  (
y  =  <. (
( T ( proj1 `  G ) U ) `  x
) ,  ( ( U ( proj1 `  G ) T ) `
 x ) >.  <->  ( ( 1st `  y
)  =  ( ( T ( proj1 `  G ) U ) `
 x )  /\  ( 2nd `  y )  =  ( ( U ( proj1 `  G ) T ) `
 x ) ) ) )
4138, 40bitr4d 271 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) ) )  ->  (
x  =  ( ( 1st `  y ) ( +g  `  G
) ( 2nd `  y
) )  <->  y  =  <. ( ( T (
proj1 `  G
) U ) `  x ) ,  ( ( U ( proj1 `  G ) T ) `  x
) >. ) )
4241ex 450 . . . 4  |-  ( ph  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  X.  U ) )  ->  ( x  =  ( ( 1st `  y ) ( +g  `  G ) ( 2nd `  y ) )  <->  y  =  <. ( ( T (
proj1 `  G
) U ) `  x ) ,  ( ( U ( proj1 `  G ) T ) `  x
) >. ) ) )
431, 5, 19, 26, 42en3d 7992 . . 3  |-  ( ph  ->  ( T  .(+)  U ) 
~~  ( T  X.  U ) )
44 hasheni 13136 . . 3  |-  ( ( T  .(+)  U )  ~~  ( T  X.  U
)  ->  ( # `  ( T  .(+)  U ) )  =  ( # `  ( T  X.  U ) ) )
4543, 44syl 17 . 2  |-  ( ph  ->  ( # `  ( T  .(+)  U ) )  =  ( # `  ( T  X.  U ) ) )
46 lsmhash.1 . . 3  |-  ( ph  ->  T  e.  Fin )
47 lsmhash.2 . . 3  |-  ( ph  ->  U  e.  Fin )
48 hashxp 13221 . . 3  |-  ( ( T  e.  Fin  /\  U  e.  Fin )  ->  ( # `  ( T  X.  U ) )  =  ( ( # `  T )  x.  ( # `
 U ) ) )
4946, 47, 48syl2anc 693 . 2  |-  ( ph  ->  ( # `  ( T  X.  U ) )  =  ( ( # `  T )  x.  ( # `
 U ) ) )
5045, 49eqtrd 2656 1  |-  ( ph  ->  ( # `  ( T  .(+)  U ) )  =  ( ( # `  T )  x.  ( # `
 U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ~~ cen 7952   Fincfn 7955    x. cmul 9941   #chash 13117   +g cplusg 15941   0gc0g 16100  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-pj1 18052
This theorem is referenced by:  ablfacrp2  18466  ablfac1eulem  18471  ablfac1eu  18472  pgpfaclem2  18481
  Copyright terms: Public domain W3C validator