MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   Unicode version

Theorem ablfacrp2 18466
Description: The factors  K ,  L of ablfacrp 18465 have the expected orders (which allows for repeated application to decompose  G into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b  |-  B  =  ( Base `  G
)
ablfacrp.o  |-  O  =  ( od `  G
)
ablfacrp.k  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
ablfacrp.l  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
ablfacrp.g  |-  ( ph  ->  G  e.  Abel )
ablfacrp.m  |-  ( ph  ->  M  e.  NN )
ablfacrp.n  |-  ( ph  ->  N  e.  NN )
ablfacrp.1  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
ablfacrp.2  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
Assertion
Ref Expression
ablfacrp2  |-  ( ph  ->  ( ( # `  K
)  =  M  /\  ( # `  L )  =  N ) )
Distinct variable groups:    x, B    x, G    x, O    x, M    x, N    ph, x
Allowed substitution hints:    K( x)    L( x)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
2 ablfacrp.m . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
32nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
4 ablfacrp.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
54nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
63, 5nn0mulcld 11356 . . . . . . 7  |-  ( ph  ->  ( M  x.  N
)  e.  NN0 )
71, 6eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
8 ablfacrp.b . . . . . . . 8  |-  B  =  ( Base `  G
)
9 fvex 6201 . . . . . . . 8  |-  ( Base `  G )  e.  _V
108, 9eqeltri 2697 . . . . . . 7  |-  B  e. 
_V
11 hashclb 13149 . . . . . . 7  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
1210, 11ax-mp 5 . . . . . 6  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
137, 12sylibr 224 . . . . 5  |-  ( ph  ->  B  e.  Fin )
14 ablfacrp.k . . . . . 6  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
15 ssrab2 3687 . . . . . 6  |-  { x  e.  B  |  ( O `  x )  ||  M }  C_  B
1614, 15eqsstri 3635 . . . . 5  |-  K  C_  B
17 ssfi 8180 . . . . 5  |-  ( ( B  e.  Fin  /\  K  C_  B )  ->  K  e.  Fin )
1813, 16, 17sylancl 694 . . . 4  |-  ( ph  ->  K  e.  Fin )
19 hashcl 13147 . . . 4  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
2018, 19syl 17 . . 3  |-  ( ph  ->  ( # `  K
)  e.  NN0 )
21 ablfacrp.g . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
222nnzd 11481 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
23 ablfacrp.o . . . . . . . . 9  |-  O  =  ( od `  G
)
2423, 8oddvdssubg 18258 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  M  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G ) )
2521, 22, 24syl2anc 693 . . . . . . 7  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G
) )
2614, 25syl5eqel 2705 . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
278lagsubg 17656 . . . . . 6  |-  ( ( K  e.  (SubGrp `  G )  /\  B  e.  Fin )  ->  ( # `
 K )  ||  ( # `  B ) )
2826, 13, 27syl2anc 693 . . . . 5  |-  ( ph  ->  ( # `  K
)  ||  ( # `  B
) )
292nncnd 11036 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
304nncnd 11036 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
3129, 30mulcomd 10061 . . . . . 6  |-  ( ph  ->  ( M  x.  N
)  =  ( N  x.  M ) )
321, 31eqtrd 2656 . . . . 5  |-  ( ph  ->  ( # `  B
)  =  ( N  x.  M ) )
3328, 32breqtrd 4679 . . . 4  |-  ( ph  ->  ( # `  K
)  ||  ( N  x.  M ) )
34 ablfacrp.l . . . . 5  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
35 ablfacrp.1 . . . . 5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
368, 23, 14, 34, 21, 2, 4, 35, 1ablfacrplem 18464 . . . 4  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
3720nn0zd 11480 . . . . 5  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
384nnzd 11481 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
39 coprmdvds 15366 . . . . 5  |-  ( ( ( # `  K
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( # `  K
)  ||  ( N  x.  M )  /\  (
( # `  K )  gcd  N )  =  1 )  ->  ( # `
 K )  ||  M ) )
4037, 38, 22, 39syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( ( # `  K )  ||  ( N  x.  M )  /\  ( ( # `  K
)  gcd  N )  =  1 )  -> 
( # `  K ) 
||  M ) )
4133, 36, 40mp2and 715 . . 3  |-  ( ph  ->  ( # `  K
)  ||  M )
4223, 8oddvdssubg 18258 . . . . . . . . . . 11  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
4321, 38, 42syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
) )
4434, 43syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  L  e.  (SubGrp `  G ) )
458lagsubg 17656 . . . . . . . . 9  |-  ( ( L  e.  (SubGrp `  G )  /\  B  e.  Fin )  ->  ( # `
 L )  ||  ( # `  B ) )
4644, 13, 45syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( # `  L
)  ||  ( # `  B
) )
4746, 1breqtrd 4679 . . . . . . 7  |-  ( ph  ->  ( # `  L
)  ||  ( M  x.  N ) )
48 gcdcom 15235 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( N  gcd  M ) )
4922, 38, 48syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( M  gcd  N
)  =  ( N  gcd  M ) )
5049, 35eqtr3d 2658 . . . . . . . 8  |-  ( ph  ->  ( N  gcd  M
)  =  1 )
518, 23, 34, 14, 21, 4, 2, 50, 32ablfacrplem 18464 . . . . . . 7  |-  ( ph  ->  ( ( # `  L
)  gcd  M )  =  1 )
52 ssrab2 3687 . . . . . . . . . . . 12  |-  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
5334, 52eqsstri 3635 . . . . . . . . . . 11  |-  L  C_  B
54 ssfi 8180 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  L  C_  B )  ->  L  e.  Fin )
5513, 53, 54sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Fin )
56 hashcl 13147 . . . . . . . . . 10  |-  ( L  e.  Fin  ->  ( # `
 L )  e. 
NN0 )
5755, 56syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  L
)  e.  NN0 )
5857nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  ( # `  L
)  e.  ZZ )
59 coprmdvds 15366 . . . . . . . 8  |-  ( ( ( # `  L
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( # `  L
)  ||  ( M  x.  N )  /\  (
( # `  L )  gcd  M )  =  1 )  ->  ( # `
 L )  ||  N ) )
6058, 22, 38, 59syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( ( # `  L )  ||  ( M  x.  N )  /\  ( ( # `  L
)  gcd  M )  =  1 )  -> 
( # `  L ) 
||  N ) )
6147, 51, 60mp2and 715 . . . . . 6  |-  ( ph  ->  ( # `  L
)  ||  N )
62 dvdscmul 15008 . . . . . . 7  |-  ( ( ( # `  L
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( # `  L ) 
||  N  ->  ( M  x.  ( # `  L
) )  ||  ( M  x.  N )
) )
6358, 38, 22, 62syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( # `  L
)  ||  N  ->  ( M  x.  ( # `  L ) )  ||  ( M  x.  N
) ) )
6461, 63mpd 15 . . . . 5  |-  ( ph  ->  ( M  x.  ( # `
 L ) ) 
||  ( M  x.  N ) )
65 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
66 eqid 2622 . . . . . . . . . 10  |-  ( LSSum `  G )  =  (
LSSum `  G )
678, 23, 14, 34, 21, 2, 4, 35, 1, 65, 66ablfacrp 18465 . . . . . . . . 9  |-  ( ph  ->  ( ( K  i^i  L )  =  { ( 0g `  G ) }  /\  ( K ( LSSum `  G ) L )  =  B ) )
6867simprd 479 . . . . . . . 8  |-  ( ph  ->  ( K ( LSSum `  G ) L )  =  B )
6968fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( # `  ( K ( LSSum `  G
) L ) )  =  ( # `  B
) )
70 eqid 2622 . . . . . . . 8  |-  (Cntz `  G )  =  (Cntz `  G )
7167simpld 475 . . . . . . . 8  |-  ( ph  ->  ( K  i^i  L
)  =  { ( 0g `  G ) } )
7270, 21, 26, 44ablcntzd 18260 . . . . . . . 8  |-  ( ph  ->  K  C_  ( (Cntz `  G ) `  L
) )
7366, 65, 70, 26, 44, 71, 72, 18, 55lsmhash 18118 . . . . . . 7  |-  ( ph  ->  ( # `  ( K ( LSSum `  G
) L ) )  =  ( ( # `  K )  x.  ( # `
 L ) ) )
7469, 73eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( # `  B
)  =  ( (
# `  K )  x.  ( # `  L
) ) )
7574, 1eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( # `  K
)  x.  ( # `  L ) )  =  ( M  x.  N
) )
7664, 75breqtrrd 4681 . . . 4  |-  ( ph  ->  ( M  x.  ( # `
 L ) ) 
||  ( ( # `  K )  x.  ( # `
 L ) ) )
7765subg0cl 17602 . . . . . . . 8  |-  ( L  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  L
)
78 ne0i 3921 . . . . . . . 8  |-  ( ( 0g `  G )  e.  L  ->  L  =/=  (/) )
7944, 77, 783syl 18 . . . . . . 7  |-  ( ph  ->  L  =/=  (/) )
80 hashnncl 13157 . . . . . . . 8  |-  ( L  e.  Fin  ->  (
( # `  L )  e.  NN  <->  L  =/=  (/) ) )
8155, 80syl 17 . . . . . . 7  |-  ( ph  ->  ( ( # `  L
)  e.  NN  <->  L  =/=  (/) ) )
8279, 81mpbird 247 . . . . . 6  |-  ( ph  ->  ( # `  L
)  e.  NN )
8382nnne0d 11065 . . . . 5  |-  ( ph  ->  ( # `  L
)  =/=  0 )
84 dvdsmulcr 15011 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( # `  K )  e.  ZZ  /\  (
( # `  L )  e.  ZZ  /\  ( # `
 L )  =/=  0 ) )  -> 
( ( M  x.  ( # `  L ) )  ||  ( (
# `  K )  x.  ( # `  L
) )  <->  M  ||  ( # `
 K ) ) )
8522, 37, 58, 83, 84syl112anc 1330 . . . 4  |-  ( ph  ->  ( ( M  x.  ( # `  L ) )  ||  ( (
# `  K )  x.  ( # `  L
) )  <->  M  ||  ( # `
 K ) ) )
8676, 85mpbid 222 . . 3  |-  ( ph  ->  M  ||  ( # `  K ) )
87 dvdseq 15036 . . 3  |-  ( ( ( ( # `  K
)  e.  NN0  /\  M  e.  NN0 )  /\  ( ( # `  K
)  ||  M  /\  M  ||  ( # `  K
) ) )  -> 
( # `  K )  =  M )
8820, 3, 41, 86, 87syl22anc 1327 . 2  |-  ( ph  ->  ( # `  K
)  =  M )
89 dvdsmulc 15009 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( # `  K ) 
||  M  ->  (
( # `  K )  x.  N )  ||  ( M  x.  N
) ) )
9037, 22, 38, 89syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  M  ->  ( ( # `  K
)  x.  N ) 
||  ( M  x.  N ) ) )
9141, 90mpd 15 . . . . 5  |-  ( ph  ->  ( ( # `  K
)  x.  N ) 
||  ( M  x.  N ) )
9291, 75breqtrrd 4681 . . . 4  |-  ( ph  ->  ( ( # `  K
)  x.  N ) 
||  ( ( # `  K )  x.  ( # `
 L ) ) )
9388, 2eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( # `  K
)  e.  NN )
9493nnne0d 11065 . . . . 5  |-  ( ph  ->  ( # `  K
)  =/=  0 )
95 dvdscmulr 15010 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( # `  L )  e.  ZZ  /\  (
( # `  K )  e.  ZZ  /\  ( # `
 K )  =/=  0 ) )  -> 
( ( ( # `  K )  x.  N
)  ||  ( ( # `
 K )  x.  ( # `  L
) )  <->  N  ||  ( # `
 L ) ) )
9638, 58, 37, 94, 95syl112anc 1330 . . . 4  |-  ( ph  ->  ( ( ( # `  K )  x.  N
)  ||  ( ( # `
 K )  x.  ( # `  L
) )  <->  N  ||  ( # `
 L ) ) )
9792, 96mpbid 222 . . 3  |-  ( ph  ->  N  ||  ( # `  L ) )
98 dvdseq 15036 . . 3  |-  ( ( ( ( # `  L
)  e.  NN0  /\  N  e.  NN0 )  /\  ( ( # `  L
)  ||  N  /\  N  ||  ( # `  L
) ) )  -> 
( # `  L )  =  N )
9957, 5, 61, 97, 98syl22anc 1327 . 2  |-  ( ph  ->  ( # `  L
)  =  N )
10088, 99jca 554 1  |-  ( ph  ->  ( ( # `  K
)  =  M  /\  ( # `  L )  =  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   #chash 13117    || cdvds 14983    gcd cgcd 15216   Basecbs 15857   0gc0g 16100  SubGrpcsubg 17588  Cntzccntz 17748   odcod 17944   LSSumclsm 18049   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-cntz 17750  df-od 17948  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196
This theorem is referenced by:  ablfac1a  18468
  Copyright terms: Public domain W3C validator