Proof of Theorem ablfacrp2
Step | Hyp | Ref
| Expression |
1 | | ablfacrp.2 |
. . . . . . 7
         |
2 | | ablfacrp.m |
. . . . . . . . 9
   |
3 | 2 | nnnn0d 11351 |
. . . . . . . 8
   |
4 | | ablfacrp.n |
. . . . . . . . 9
   |
5 | 4 | nnnn0d 11351 |
. . . . . . . 8
   |
6 | 3, 5 | nn0mulcld 11356 |
. . . . . . 7
     |
7 | 1, 6 | eqeltrd 2701 |
. . . . . 6
       |
8 | | ablfacrp.b |
. . . . . . . 8
     |
9 | | fvex 6201 |
. . . . . . . 8
     |
10 | 8, 9 | eqeltri 2697 |
. . . . . . 7
 |
11 | | hashclb 13149 |
. . . . . . 7
 
       |
12 | 10, 11 | ax-mp 5 |
. . . . . 6

      |
13 | 7, 12 | sylibr 224 |
. . . . 5
   |
14 | | ablfacrp.k |
. . . . . 6
       |
15 | | ssrab2 3687 |
. . . . . 6

      |
16 | 14, 15 | eqsstri 3635 |
. . . . 5
 |
17 | | ssfi 8180 |
. . . . 5
  
  |
18 | 13, 16, 17 | sylancl 694 |
. . . 4
   |
19 | | hashcl 13147 |
. . . 4
       |
20 | 18, 19 | syl 17 |
. . 3
       |
21 | | ablfacrp.g |
. . . . . . . 8
   |
22 | 2 | nnzd 11481 |
. . . . . . . 8
   |
23 | | ablfacrp.o |
. . . . . . . . 9
     |
24 | 23, 8 | oddvdssubg 18258 |
. . . . . . . 8
   
     SubGrp    |
25 | 21, 22, 24 | syl2anc 693 |
. . . . . . 7
      
SubGrp    |
26 | 14, 25 | syl5eqel 2705 |
. . . . . 6
 SubGrp    |
27 | 8 | lagsubg 17656 |
. . . . . 6
  SubGrp             |
28 | 26, 13, 27 | syl2anc 693 |
. . . . 5
    
      |
29 | 2 | nncnd 11036 |
. . . . . . 7
   |
30 | 4 | nncnd 11036 |
. . . . . . 7
   |
31 | 29, 30 | mulcomd 10061 |
. . . . . 6
       |
32 | 1, 31 | eqtrd 2656 |
. . . . 5
         |
33 | 28, 32 | breqtrd 4679 |
. . . 4
    
    |
34 | | ablfacrp.l |
. . . . 5
       |
35 | | ablfacrp.1 |
. . . . 5
     |
36 | 8, 23, 14, 34, 21, 2, 4, 35, 1 | ablfacrplem 18464 |
. . . 4
     
   |
37 | 20 | nn0zd 11480 |
. . . . 5
       |
38 | 4 | nnzd 11481 |
. . . . 5
   |
39 | | coprmdvds 15366 |
. . . . 5
     
      
                |
40 | 37, 38, 22, 39 | syl3anc 1326 |
. . . 4
       
     
         |
41 | 33, 36, 40 | mp2and 715 |
. . 3
    
  |
42 | 23, 8 | oddvdssubg 18258 |
. . . . . . . . . . 11
   
     SubGrp    |
43 | 21, 38, 42 | syl2anc 693 |
. . . . . . . . . 10
      
SubGrp    |
44 | 34, 43 | syl5eqel 2705 |
. . . . . . . . 9
 SubGrp    |
45 | 8 | lagsubg 17656 |
. . . . . . . . 9
  SubGrp             |
46 | 44, 13, 45 | syl2anc 693 |
. . . . . . . 8
    
      |
47 | 46, 1 | breqtrd 4679 |
. . . . . . 7
    
    |
48 | | gcdcom 15235 |
. . . . . . . . . 10
 
       |
49 | 22, 38, 48 | syl2anc 693 |
. . . . . . . . 9
       |
50 | 49, 35 | eqtr3d 2658 |
. . . . . . . 8
     |
51 | 8, 23, 34, 14, 21, 4, 2, 50, 32 | ablfacrplem 18464 |
. . . . . . 7
     
   |
52 | | ssrab2 3687 |
. . . . . . . . . . . 12

      |
53 | 34, 52 | eqsstri 3635 |
. . . . . . . . . . 11
 |
54 | | ssfi 8180 |
. . . . . . . . . . 11
  
  |
55 | 13, 53, 54 | sylancl 694 |
. . . . . . . . . 10
   |
56 | | hashcl 13147 |
. . . . . . . . . 10
       |
57 | 55, 56 | syl 17 |
. . . . . . . . 9
       |
58 | 57 | nn0zd 11480 |
. . . . . . . 8
       |
59 | | coprmdvds 15366 |
. . . . . . . 8
     
      
                |
60 | 58, 22, 38, 59 | syl3anc 1326 |
. . . . . . 7
       
     
         |
61 | 47, 51, 60 | mp2and 715 |
. . . . . 6
    
  |
62 | | dvdscmul 15008 |
. . . . . . 7
     
      
     
    |
63 | 58, 38, 22, 62 | syl3anc 1326 |
. . . . . 6
     
      
    |
64 | 61, 63 | mpd 15 |
. . . . 5
           |
65 | | eqid 2622 |
. . . . . . . . . 10
         |
66 | | eqid 2622 |
. . . . . . . . . 10
         |
67 | 8, 23, 14, 34, 21, 2, 4, 35, 1,
65, 66 | ablfacrp 18465 |
. . . . . . . . 9
                     |
68 | 67 | simprd 479 |
. . . . . . . 8
           |
69 | 68 | fveq2d 6195 |
. . . . . . 7
                   |
70 | | eqid 2622 |
. . . . . . . 8
Cntz  Cntz   |
71 | 67 | simpld 475 |
. . . . . . . 8
           |
72 | 70, 21, 26, 44 | ablcntzd 18260 |
. . . . . . . 8

 Cntz       |
73 | 66, 65, 70, 26, 44, 71, 72, 18, 55 | lsmhash 18118 |
. . . . . . 7
                         |
74 | 69, 73 | eqtr3d 2658 |
. . . . . 6
                 |
75 | 74, 1 | eqtr3d 2658 |
. . . . 5
               |
76 | 64, 75 | breqtrrd 4681 |
. . . 4
                   |
77 | 65 | subg0cl 17602 |
. . . . . . . 8
 SubGrp 
      |
78 | | ne0i 3921 |
. . . . . . . 8
       |
79 | 44, 77, 78 | 3syl 18 |
. . . . . . 7
   |
80 | | hashnncl 13157 |
. . . . . . . 8
     
   |
81 | 55, 80 | syl 17 |
. . . . . . 7
     
   |
82 | 79, 81 | mpbird 247 |
. . . . . 6
       |
83 | 82 | nnne0d 11065 |
. . . . 5
       |
84 | | dvdsmulcr 15011 |
. . . . 5
                                 
       |
85 | 22, 37, 58, 83, 84 | syl112anc 1330 |
. . . 4
                 
       |
86 | 76, 85 | mpbid 222 |
. . 3
       |
87 | | dvdseq 15036 |
. . 3
      
     
            |
88 | 20, 3, 41, 86, 87 | syl22anc 1327 |
. 2
       |
89 | | dvdsmulc 15009 |
. . . . . . 7
     
            
    |
90 | 37, 22, 38, 89 | syl3anc 1326 |
. . . . . 6
     
           |
91 | 41, 90 | mpd 15 |
. . . . 5
           |
92 | 91, 75 | breqtrrd 4681 |
. . . 4
                   |
93 | 88, 2 | eqeltrd 2701 |
. . . . . 6
       |
94 | 93 | nnne0d 11065 |
. . . . 5
       |
95 | | dvdscmulr 15010 |
. . . . 5
                       
         
       |
96 | 38, 58, 37, 94, 95 | syl112anc 1330 |
. . . 4
       
         
       |
97 | 92, 96 | mpbid 222 |
. . 3
       |
98 | | dvdseq 15036 |
. . 3
      
     
            |
99 | 57, 5, 61, 97, 98 | syl22anc 1327 |
. 2
       |
100 | 88, 99 | jca 554 |
1
             |