MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1f Structured version   Visualization version   Unicode version

Theorem pj1f 18110
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a  |-  .+  =  ( +g  `  G )
pj1eu.s  |-  .(+)  =  (
LSSum `  G )
pj1eu.o  |-  .0.  =  ( 0g `  G )
pj1eu.z  |-  Z  =  (Cntz `  G )
pj1eu.2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
pj1eu.3  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pj1eu.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
pj1eu.5  |-  ( ph  ->  T  C_  ( Z `  U ) )
pj1f.p  |-  P  =  ( proj1 `  G )
Assertion
Ref Expression
pj1f  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )

Proof of Theorem pj1f
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.a . . . . 5  |-  .+  =  ( +g  `  G )
2 pj1eu.s . . . . 5  |-  .(+)  =  (
LSSum `  G )
3 pj1eu.o . . . . 5  |-  .0.  =  ( 0g `  G )
4 pj1eu.z . . . . 5  |-  Z  =  (Cntz `  G )
5 pj1eu.2 . . . . 5  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
6 pj1eu.3 . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
7 pj1eu.4 . . . . 5  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
8 pj1eu.5 . . . . 5  |-  ( ph  ->  T  C_  ( Z `  U ) )
91, 2, 3, 4, 5, 6, 7, 8pj1eu 18109 . . . 4  |-  ( (
ph  /\  z  e.  ( T  .(+)  U ) )  ->  E! x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) )
10 riotacl 6625 . . . 4  |-  ( E! x  e.  T  E. y  e.  U  z  =  ( x  .+  y )  ->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) )  e.  T )
119, 10syl 17 . . 3  |-  ( (
ph  /\  z  e.  ( T  .(+)  U ) )  ->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) )  e.  T )
12 eqid 2622 . . 3  |-  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) )  =  ( z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) )
1311, 12fmptd 6385 . 2  |-  ( ph  ->  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) : ( T  .(+)  U ) --> T )
14 subgrcl 17599 . . . . 5  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
155, 14syl 17 . . . 4  |-  ( ph  ->  G  e.  Grp )
16 eqid 2622 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1716subgss 17595 . . . . 5  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
185, 17syl 17 . . . 4  |-  ( ph  ->  T  C_  ( Base `  G ) )
1916subgss 17595 . . . . 5  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
206, 19syl 17 . . . 4  |-  ( ph  ->  U  C_  ( Base `  G ) )
21 pj1f.p . . . . 5  |-  P  =  ( proj1 `  G )
2216, 1, 2, 21pj1fval 18107 . . . 4  |-  ( ( G  e.  Grp  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T P U )  =  ( z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
2315, 18, 20, 22syl3anc 1326 . . 3  |-  ( ph  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
2423feq1d 6030 . 2  |-  ( ph  ->  ( ( T P U ) : ( T  .(+)  U ) --> T 
<->  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) : ( T  .(+)  U ) --> T ) )
2513, 24mpbird 247 1  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   E!wreu 2914    i^i cin 3573    C_ wss 3574   {csn 4177    |-> cmpt 4729   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-pj1 18052
This theorem is referenced by:  pj2f  18111  pj1id  18112  pj1eq  18113  pj1ghm  18116  pj1ghm2  18117  lsmhash  18118  dpjf  18456  pj1lmhm  19100  pj1lmhm2  19101  pjdm2  20055  pjf2  20058
  Copyright terms: Public domain W3C validator