MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatBAD Structured version   Visualization version   Unicode version

Theorem mreclatBAD 17187
Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6611 update): Reprove using isclat 17109 instead of the isclatBAD. hypothesis. See commented-out mreclat above.
Hypotheses
Ref Expression
mreclat.i  |-  I  =  (toInc `  C )
isclatBAD.  |-  ( I  e.  CLat  <->  ( I  e. 
Poset  /\  A. x ( x  C_  ( Base `  I )  ->  (
( ( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
Assertion
Ref Expression
mreclatBAD  |-  ( C  e.  (Moore `  X
)  ->  I  e.  CLat )
Distinct variable groups:    x, I    x, C    x, X

Proof of Theorem mreclatBAD
StepHypRef Expression
1 mreclat.i . . . 4  |-  I  =  (toInc `  C )
21ipopos 17160 . . 3  |-  I  e. 
Poset
32a1i 11 . 2  |-  ( C  e.  (Moore `  X
)  ->  I  e.  Poset
)
4 eqid 2622 . . . . . . . 8  |-  (mrCls `  C )  =  (mrCls `  C )
5 eqid 2622 . . . . . . . 8  |-  ( lub `  I )  =  ( lub `  I )
61, 4, 5mrelatlub 17186 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( lub `  I
) `  x )  =  ( (mrCls `  C ) `  U. x ) )
7 uniss 4458 . . . . . . . . . 10  |-  ( x 
C_  C  ->  U. x  C_ 
U. C )
87adantl 482 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. x  C_ 
U. C )
9 mreuni 16260 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  U. C  =  X )
109adantr 481 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. C  =  X )
118, 10sseqtrd 3641 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. x  C_  X )
124mrccl 16271 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  U. x  C_  X )  -> 
( (mrCls `  C
) `  U. x )  e.  C )
1311, 12syldan 487 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
(mrCls `  C ) `  U. x )  e.  C )
146, 13eqeltrd 2701 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( lub `  I
) `  x )  e.  C )
15 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( glb `  I ) `
 x )  =  ( ( glb `  I
) `  (/) ) )
1615adantl 482 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  =  ( ( glb `  I ) `  (/) ) )
17 eqid 2622 . . . . . . . . . . 11  |-  ( glb `  I )  =  ( glb `  I )
181, 17mrelatglb0 17185 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  ( ( glb `  I ) `  (/) )  =  X )
1918ad2antrr 762 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  (/) )  =  X )
2016, 19eqtrd 2656 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  =  X )
21 mre1cl 16254 . . . . . . . . 9  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
2221ad2antrr 762 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  X  e.  C )
2320, 22eqeltrd 2701 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  e.  C )
241, 17mrelatglb 17184 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( glb `  I ) `
 x )  = 
|^| x )
25 mreintcl 16255 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  e.  C )
2624, 25eqeltrd 2701 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( glb `  I ) `
 x )  e.  C )
27263expa 1265 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =/=  (/) )  ->  (
( glb `  I
) `  x )  e.  C )
2823, 27pm2.61dane 2881 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( glb `  I
) `  x )  e.  C )
2914, 28jca 554 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )
3029ex 450 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ( x  C_  C  ->  ( (
( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) ) )
311ipobas 17155 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  C  =  ( Base `  I )
)
32 sseq2 3627 . . . . . 6  |-  ( C  =  ( Base `  I
)  ->  ( x  C_  C  <->  x  C_  ( Base `  I ) ) )
33 eleq2 2690 . . . . . . 7  |-  ( C  =  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  C  <->  ( ( lub `  I ) `  x
)  e.  ( Base `  I ) ) )
34 eleq2 2690 . . . . . . 7  |-  ( C  =  ( Base `  I
)  ->  ( (
( glb `  I
) `  x )  e.  C  <->  ( ( glb `  I ) `  x
)  e.  ( Base `  I ) ) )
3533, 34anbi12d 747 . . . . . 6  |-  ( C  =  ( Base `  I
)  ->  ( (
( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C )  <->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) )
3632, 35imbi12d 334 . . . . 5  |-  ( C  =  ( Base `  I
)  ->  ( (
x  C_  C  ->  ( ( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )  <->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
3731, 36syl 17 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ( (
x  C_  C  ->  ( ( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )  <->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
3830, 37mpbid 222 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) )
3938alrimiv 1855 . 2  |-  ( C  e.  (Moore `  X
)  ->  A. x
( x  C_  ( Base `  I )  -> 
( ( ( lub `  I ) `  x
)  e.  ( Base `  I )  /\  (
( glb `  I
) `  x )  e.  ( Base `  I
) ) ) )
40 isclatBAD. . 2  |-  ( I  e.  CLat  <->  ( I  e. 
Poset  /\  A. x ( x  C_  ( Base `  I )  ->  (
( ( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
413, 39, 40sylanbrc 698 1  |-  ( C  e.  (Moore `  X
)  ->  I  e.  CLat )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|cint 4475   ` cfv 5888   Basecbs 15857  Moorecmre 16242  mrClscmrc 16243   Posetcpo 16940   lubclub 16942   glbcglb 16943   CLatccla 17107  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-odu 17129  df-ipo 17152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator