MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o Structured version   Visualization version   Unicode version

Theorem nn0o 15099
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 15097 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
2 1m1e0 11089 . . . . . . . 8  |-  ( 1  -  1 )  =  0
32oveq1i 6660 . . . . . . 7  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
4 2cn 11091 . . . . . . . 8  |-  2  e.  CC
5 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
64, 5div0i 10759 . . . . . . 7  |-  ( 0  /  2 )  =  0
73, 6eqtri 2644 . . . . . 6  |-  ( ( 1  -  1 )  /  2 )  =  0
8 0nn0 11307 . . . . . 6  |-  0  e.  NN0
97, 8eqeltri 2697 . . . . 5  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
10 oveq1 6657 . . . . . . . 8  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
1110oveq1d 6665 . . . . . . 7  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
1211eleq1d 2686 . . . . . 6  |-  ( N  =  1  ->  (
( ( N  - 
1 )  /  2
)  e.  NN0  <->  ( (
1  -  1 )  /  2 )  e. 
NN0 ) )
1312adantr 481 . . . . 5  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( (
( N  -  1 )  /  2 )  e.  NN0  <->  ( ( 1  -  1 )  / 
2 )  e.  NN0 ) )
149, 13mpbiri 248 . . . 4  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
1514ex 450 . . 3  |-  ( N  =  1  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
16 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
1716a1i 11 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  e.  ZZ )
18 nn0z 11400 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1918ad2antrl 764 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ZZ )
20 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
21 nn0re 11301 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
22 ltle 10126 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
2320, 21, 22sylancr 695 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <  N  ->  2  <_  N ) )
2423adantr 481 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( 2  <  N  ->  2  <_  N )
)
2524impcom 446 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  <_  N )
26 eluz2 11693 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2717, 19, 25, 26syl3anbrc 1246 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ( ZZ>= `  2 )
)
28 simprr 796 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  +  1 )  /  2 )  e. 
NN0 )
2927, 28jca 554 . . . . 5  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)
30 nno 15098 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
31 nnnn0 11299 . . . . 5  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  ->  (
( N  -  1 )  /  2 )  e.  NN0 )
3229, 30, 313syl 18 . . . 4  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
3332ex 450 . . 3  |-  ( 2  <  N  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
3415, 33jaoi 394 . 2  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN0  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
)
351, 34mpcom 38 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  nn0ob  15100  nn0onn0ex  42318  nneom  42321  flnn0div2ge  42327  flnn0ohalf  42328
  Copyright terms: Public domain W3C validator