MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nno Structured version   Visualization version   Unicode version

Theorem nno 15098
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 11762 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2 nnnn0 11299 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 nn0o1gt2 15097 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
42, 3sylan 488 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
5 eqneqall 2805 . . . . . . 7  |-  ( N  =  1  ->  ( N  =/=  1  ->  (
( N  -  1 )  /  2 )  e.  NN ) )
65a1d 25 . . . . . 6  |-  ( N  =  1  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
7 nn0z 11400 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
8 peano2zm 11420 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ )
97, 8syl 17 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  -  1 )  e.  ZZ )
109ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  ZZ )
11 2cn 11091 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1211mulid2i 10043 . . . . . . . . . . . . . 14  |-  ( 1  x.  2 )  =  2
13 nnre 11027 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
1413ltp1d 10954 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
1514adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  ->  N  <  ( N  + 
1 ) )
16 2re 11090 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
1716a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
18 peano2nn 11032 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
1918nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
20 lttr 10114 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  ( N  +  1 )  e.  RR )  -> 
( ( 2  < 
N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2117, 13, 19, 20syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( 2  <  N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2221expdimp 453 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  <  ( N  +  1 )  ->  2  <  ( N  +  1 ) ) )
2315, 22mpd 15 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
2  <  ( N  +  1 ) )
2412, 23syl5eqbr 4688 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  x.  2 )  <  ( N  +  1 ) )
25 1red 10055 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  e.  RR )
2619adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  +  1 )  e.  RR )
27 2pos 11112 . . . . . . . . . . . . . . . 16  |-  0  <  2
2816, 27pm3.2i 471 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 2  e.  RR  /\  0  <  2 ) )
30 ltmuldiv 10896 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( N  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
1  x.  2 )  <  ( N  + 
1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3125, 26, 29, 30syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( 1  x.  2 )  <  ( N  +  1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3224, 31mpbid 222 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  <  ( ( N  +  1 )  /  2 ) )
3319rehalfcld 11279 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  RR )
3433adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( N  + 
1 )  /  2
)  e.  RR )
3525, 34posdifd 10614 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  <  (
( N  +  1 )  /  2 )  <->  0  <  ( ( ( N  +  1 )  /  2 )  -  1 ) ) )
3632, 35mpbid 222 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
0  <  ( (
( N  +  1 )  /  2 )  -  1 ) )
3736adantlr 751 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  0  <  (
( ( N  + 
1 )  /  2
)  -  1 ) )
38 elnnz 11387 . . . . . . . . . 10  |-  ( ( ( ( N  + 
1 )  /  2
)  -  1 )  e.  NN  <->  ( (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ  /\  0  <  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
3910, 37, 38sylanbrc 698 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN )
40 nncn 11028 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
41 xp1d2m1eqxm1d2 11286 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4240, 41syl 17 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4342eleq1d 2686 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  / 
2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4443adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4544adantr 481 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( ( N  +  1 )  /  2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  / 
2 )  e.  NN ) )
4639, 45mpbid 222 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( N  -  1 )  / 
2 )  e.  NN )
4746a1d 25 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( N  =/=  1  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4847expcom 451 . . . . . 6  |-  ( 2  <  N  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
496, 48jaoi 394 . . . . 5  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
504, 49mpcom 38 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
5150impancom 456 . . 3  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
521, 51sylbi 207 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
5352imp 445 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  nn0o  15099  gausslemma2dlem0b  25082  blennngt2o2  42386  dignn0flhalf  42412
  Copyright terms: Public domain W3C validator