| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem6 | Structured version Visualization version Unicode version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem1.1 |
|
| normlem1.2 |
|
| normlem1.3 |
|
| normlem2.4 |
|
| normlem3.5 |
|
| normlem3.6 |
|
| normlem6.7 |
|
| Ref | Expression |
|---|---|
| normlem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem3.5 |
. . . . . . . . 9
| |
| 2 | normlem1.3 |
. . . . . . . . . 10
| |
| 3 | hiidrcl 27952 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . . 9
|
| 5 | 1, 4 | eqeltri 2697 |
. . . . . . . 8
|
| 6 | 5 | a1i 11 |
. . . . . . 7
|
| 7 | normlem1.1 |
. . . . . . . . 9
| |
| 8 | normlem1.2 |
. . . . . . . . 9
| |
| 9 | normlem2.4 |
. . . . . . . . 9
| |
| 10 | 7, 8, 2, 9 | normlem2 27968 |
. . . . . . . 8
|
| 11 | 10 | a1i 11 |
. . . . . . 7
|
| 12 | normlem3.6 |
. . . . . . . . 9
| |
| 13 | hiidrcl 27952 |
. . . . . . . . . 10
| |
| 14 | 8, 13 | ax-mp 5 |
. . . . . . . . 9
|
| 15 | 12, 14 | eqeltri 2697 |
. . . . . . . 8
|
| 16 | 15 | a1i 11 |
. . . . . . 7
|
| 17 | oveq1 6657 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | oveq2d 6666 |
. . . . . . . . . . . 12
|
| 19 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | oveq12d 6668 |
. . . . . . . . . . 11
|
| 21 | 20 | oveq1d 6665 |
. . . . . . . . . 10
|
| 22 | 21 | breq2d 4665 |
. . . . . . . . 9
|
| 23 | 0re 10040 |
. . . . . . . . . . 11
| |
| 24 | 23 | elimel 4150 |
. . . . . . . . . 10
|
| 25 | normlem6.7 |
. . . . . . . . . 10
| |
| 26 | 7, 8, 2, 9, 1, 12, 24, 25 | normlem5 27971 |
. . . . . . . . 9
|
| 27 | 22, 26 | dedth 4139 |
. . . . . . . 8
|
| 28 | 27 | adantl 482 |
. . . . . . 7
|
| 29 | 6, 11, 16, 28 | discr 13001 |
. . . . . 6
|
| 30 | 29 | trud 1493 |
. . . . 5
|
| 31 | 10 | resqcli 12949 |
. . . . . 6
|
| 32 | 4re 11097 |
. . . . . . 7
| |
| 33 | 5, 15 | remulcli 10054 |
. . . . . . 7
|
| 34 | 32, 33 | remulcli 10054 |
. . . . . 6
|
| 35 | 31, 34, 23 | lesubadd2i 10588 |
. . . . 5
|
| 36 | 30, 35 | mpbi 220 |
. . . 4
|
| 37 | 34 | recni 10052 |
. . . . 5
|
| 38 | 37 | addid1i 10223 |
. . . 4
|
| 39 | 36, 38 | breqtri 4678 |
. . 3
|
| 40 | 10 | sqge0i 12951 |
. . . 4
|
| 41 | 4pos 11116 |
. . . . . 6
| |
| 42 | 23, 32, 41 | ltleii 10160 |
. . . . 5
|
| 43 | hiidge0 27955 |
. . . . . . . 8
| |
| 44 | 2, 43 | ax-mp 5 |
. . . . . . 7
|
| 45 | 44, 1 | breqtrri 4680 |
. . . . . 6
|
| 46 | hiidge0 27955 |
. . . . . . . 8
| |
| 47 | 8, 46 | ax-mp 5 |
. . . . . . 7
|
| 48 | 47, 12 | breqtrri 4680 |
. . . . . 6
|
| 49 | 5, 15 | mulge0i 10575 |
. . . . . 6
|
| 50 | 45, 48, 49 | mp2an 708 |
. . . . 5
|
| 51 | 32, 33 | mulge0i 10575 |
. . . . 5
|
| 52 | 42, 50, 51 | mp2an 708 |
. . . 4
|
| 53 | 31, 34 | sqrtlei 14128 |
. . . 4
|
| 54 | 40, 52, 53 | mp2an 708 |
. . 3
|
| 55 | 39, 54 | mpbi 220 |
. 2
|
| 56 | 10 | absrei 14121 |
. 2
|
| 57 | 32, 33, 42, 50 | sqrtmulii 14126 |
. . 3
|
| 58 | sqrt4 14013 |
. . . 4
| |
| 59 | 5, 15, 45, 48 | sqrtmulii 14126 |
. . . 4
|
| 60 | 58, 59 | oveq12i 6662 |
. . 3
|
| 61 | 57, 60 | eqtr2i 2645 |
. 2
|
| 62 | 55, 56, 61 | 3brtr4i 4683 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hfvadd 27857 ax-hv0cl 27860 ax-hfvmul 27862 ax-hvmulass 27864 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-hvsub 27828 |
| This theorem is referenced by: normlem7 27973 |
| Copyright terms: Public domain | W3C validator |