MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Visualization version   Unicode version

Theorem ovolshftlem1 23277
Description: Lemma for ovolshft 23279. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1  |-  ( ph  ->  A  C_  RR )
ovolshft.2  |-  ( ph  ->  C  e.  RR )
ovolshft.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
ovolshft.4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
ovolshft.5  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolshft.6  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
ovolshft.7  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ovolshft.8  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
Assertion
Ref Expression
ovolshftlem1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Distinct variable groups:    f, n, x, y, A    C, f, n, x, y    n, F, x    f, G, n, y    B, f, n, y    ph, f, n, y
Allowed substitution hints:    ph( x)    B( x)    S( x, y, f, n)    F( y, f)    G( x)    M( x, y, f, n)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ovolfcl 23235 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
31, 2sylan 488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
43simp1d 1073 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
53simp2d 1074 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
6 ovolshft.2 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  RR )
76adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  RR )
83simp3d 1075 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
94, 5, 7, 8leadd1dd 10641 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  <_ 
( ( 2nd `  ( F `  n )
)  +  C ) )
10 df-br 4654 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  n )
)  +  C )  <_  ( ( 2nd `  ( F `  n
) )  +  C
)  <->  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.  e.  <_  )
119, 10sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  <_  )
124, 7readdcld 10069 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  e.  RR )
135, 7readdcld 10069 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  +  C )  e.  RR )
14 opelxp 5146 . . . . . . . . . . 11  |-  ( <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR )  <->  ( (
( 1st `  ( F `  n )
)  +  C )  e.  RR  /\  (
( 2nd `  ( F `  n )
)  +  C )  e.  RR ) )
1512, 13, 14sylanbrc 698 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR ) )
1611, 15elind 3798 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
17 ovolshft.6 . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
1816, 17fmptd 6385 . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
19 eqid 2622 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
2019ovolfsf 23240 . . . . . . . 8  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo ) )
21 ffn 6045 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo )  ->  ( ( abs  o.  -  )  o.  G )  Fn  NN )
2218, 20, 213syl 18 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  Fn  NN )
23 eqid 2622 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
2423ovolfsf 23240 . . . . . . . 8  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) +oo ) )
25 ffn 6045 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) +oo )  ->  ( ( abs  o.  -  )  o.  F )  Fn  NN )
261, 24, 253syl 18 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
)  Fn  NN )
27 opex 4932 . . . . . . . . . . . . . 14  |-  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V
2817fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V )  ->  ( G `  n
)  =  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
2927, 28mpan2 707 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( G `  n )  =  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)
3029fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
31 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 n ) )  +  C )  e. 
_V
32 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( F `
 n ) )  +  C )  e. 
_V
3331, 32op2nd 7177 . . . . . . . . . . . 12  |-  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 2nd `  ( F `
 n ) )  +  C )
3430, 33syl6eq 2672 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
3529fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( 1st `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
3631, 32op1st 7176 . . . . . . . . . . . 12  |-  ( 1st `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 1st `  ( F `
 n ) )  +  C )
3735, 36syl6eq 2672 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
3834, 37oveq12d 6668 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) )  =  ( ( ( 2nd `  ( F `  n
) )  +  C
)  -  ( ( 1st `  ( F `
 n ) )  +  C ) ) )
3938adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) ) )
405recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  CC )
414recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  CC )
427recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  CC )
4340, 41, 42pnpcan2d 10430 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4439, 43eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4519ovolfsval 23239 . . . . . . . . 9  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( 2nd `  ( G `  n
) )  -  ( 1st `  ( G `  n ) ) ) )
4618, 45sylan 488 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) ) )
4723ovolfsval 23239 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
481, 47sylan 488 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4944, 46, 483eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
5022, 26, 49eqfnfvd 6314 . . . . . 6  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  =  ( ( abs  o.  -  )  o.  F ) )
5150seqeq3d 12809 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) ) )
52 ovolshft.5 . . . . 5  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
5351, 52syl6eqr 2674 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  S )
5453rneqd 5353 . . 3  |-  ( ph  ->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  =  ran  S )
5554supeq1d 8352 . 2  |-  ( ph  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  =  sup ( ran  S ,  RR* ,  <  ) )
56 ovolshft.3 . . . . . . . . 9  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
5756eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( y  e.  B  <->  y  e.  { x  e.  RR  |  ( x  -  C )  e.  A } ) )
58 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
5958eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  -  C
)  e.  A  <->  ( y  -  C )  e.  A
) )
6059elrab 3363 . . . . . . . 8  |-  ( y  e.  { x  e.  RR  |  ( x  -  C )  e.  A }  <->  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )
6157, 60syl6bb 276 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  ( y  e.  RR  /\  ( y  -  C
)  e.  A ) ) )
6261biimpa 501 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )
63 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( y  -  C
)  e.  A )
64 ovolshft.8 . . . . . . . . . 10  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
65 ovolshft.1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR )
66 ovolfioo 23236 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6765, 1, 66syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6864, 67mpbid 222 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
6968adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
70 breq2 4657 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
( 1st `  ( F `  n )
)  <  x  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
71 breq1 4656 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
x  <  ( 2nd `  ( F `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
7270, 71anbi12d 747 . . . . . . . . . 10  |-  ( x  =  ( y  -  C )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7372rexbidv 3052 . . . . . . . . 9  |-  ( x  =  ( y  -  C )  ->  ( E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7473rspcv 3305 . . . . . . . 8  |-  ( ( y  -  C )  e.  A  ->  ( A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7563, 69, 74sylc 65 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  ( y  -  C )  /\  (
y  -  C )  <  ( 2nd `  ( F `  n )
) ) )
7637adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
7776breq1d 4663 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( ( 1st `  ( F `  n ) )  +  C )  <  y
) )
784adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( F `  n ) )  e.  RR )
796ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  C  e.  RR )
80 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  y  e.  RR )
8178, 79, 80ltaddsubd 10627 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  +  C )  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8277, 81bitrd 268 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8334adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
8483breq2d 4665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
855adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n ) )  e.  RR )
8680, 79, 85ltsubaddd 10623 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( y  -  C
)  <  ( 2nd `  ( F `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
8784, 86bitr4d 271 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
8882, 87anbi12d 747 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
8988rexbidva 3049 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
9075, 89mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
9162, 90syldan 487 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) ) )
9291ralrimiva 2966 . . . 4  |-  ( ph  ->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
93 ssrab2 3687 . . . . . 6  |-  { x  e.  RR  |  ( x  -  C )  e.  A }  C_  RR
9456, 93syl6eqss 3655 . . . . 5  |-  ( ph  ->  B  C_  RR )
95 ovolfioo 23236 . . . . 5  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9694, 18, 95syl2anc 693 . . . 4  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9792, 96mpbird 247 . . 3  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
98 ovolshft.4 . . . 4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
99 eqid 2622 . . . 4  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)
10098, 99elovolmr 23244 . . 3  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  B  C_ 
U. ran  ( (,)  o.  G ) )  ->  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) ,  RR* ,  <  )  e.  M )
10118, 97, 100syl2anc 693 . 2  |-  ( ph  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  e.  M
)
10255, 101eqeltrrd 2702 1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   (,)cioo 12175   [,)cico 12177    seqcseq 12801   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  ovolshftlem2  23278
  Copyright terms: Public domain W3C validator