Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrpgt2nabl Structured version   Visualization version   Unicode version

Theorem pgrpgt2nabl 42147
Description: Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g  |-  G  =  ( SymGrp `  A )
Assertion
Ref Expression
pgrpgt2nabl  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  G  e/  Abel )

Proof of Theorem pgrpgt2nabl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8  |-  ran  (pmTrsp `  A )  =  ran  (pmTrsp `  A )
2 pgrple2abl.g . . . . . . . 8  |-  G  =  ( SymGrp `  A )
3 eqid 2622 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
41, 2, 3symgtrf 17889 . . . . . . 7  |-  ran  (pmTrsp `  A )  C_  ( Base `  G )
5 hashcl 13147 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
6 2nn0 11309 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
7 nn0ltp1le 11435 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( 2  <  ( # `
 A )  <->  ( 2  +  1 )  <_ 
( # `  A ) ) )
86, 7mpan 706 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  e.  NN0  ->  ( 2  <  ( # `  A
)  <->  ( 2  +  1 )  <_  ( # `
 A ) ) )
9 2p1e3 11151 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
109a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
# `  A )  e.  NN0  ->  ( 2  +  1 )  =  3 )
1110breq1d 4663 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  e.  NN0  ->  ( (
2  +  1 )  <_  ( # `  A
)  <->  3  <_  ( # `
 A ) ) )
128, 11bitrd 268 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  NN0  ->  ( 2  <  ( # `  A
)  <->  3  <_  ( # `
 A ) ) )
1312biimpd 219 . . . . . . . . . . . 12  |-  ( (
# `  A )  e.  NN0  ->  ( 2  <  ( # `  A
)  ->  3  <_  (
# `  A )
) )
1413adantld 483 . . . . . . . . . . 11  |-  ( (
# `  A )  e.  NN0  ->  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  3  <_  ( # `  A
) ) )
155, 14syl 17 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  (
( A  e.  V  /\  2  <  ( # `  A ) )  -> 
3  <_  ( # `  A
) ) )
16 3re 11094 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
1716rexri 10097 . . . . . . . . . . . . . . 15  |-  3  e.  RR*
18 pnfge 11964 . . . . . . . . . . . . . . 15  |-  ( 3  e.  RR*  ->  3  <_ +oo )
1917, 18ax-mp 5 . . . . . . . . . . . . . 14  |-  3  <_ +oo
20 hashinf 13122 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  A
)  = +oo )
2119, 20syl5breqr 4691 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  3  <_  ( # `
 A ) )
2221ex 450 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( -.  A  e.  Fin  ->  3  <_  ( # `  A
) ) )
2322adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  ( -.  A  e.  Fin  ->  3  <_  ( # `  A
) ) )
2423com12 32 . . . . . . . . . 10  |-  ( -.  A  e.  Fin  ->  ( ( A  e.  V  /\  2  <  ( # `  A ) )  -> 
3  <_  ( # `  A
) ) )
2515, 24pm2.61i 176 . . . . . . . . 9  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  3  <_  ( # `  A
) )
26 eqid 2622 . . . . . . . . . . 11  |-  (pmTrsp `  A )  =  (pmTrsp `  A )
2726pmtr3ncom 17895 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  3  <_  ( # `  A
) )  ->  E. y  e.  ran  (pmTrsp `  A
) E. x  e. 
ran  (pmTrsp `  A )
( x  o.  y
)  =/=  ( y  o.  x ) )
28 rexcom 3099 . . . . . . . . . 10  |-  ( E. x  e.  ran  (pmTrsp `  A ) E. y  e.  ran  (pmTrsp `  A
) ( x  o.  y )  =/=  (
y  o.  x )  <->  E. y  e.  ran  (pmTrsp `  A ) E. x  e.  ran  (pmTrsp `  A ) ( x  o.  y )  =/=  ( y  o.  x
) )
2927, 28sylibr 224 . . . . . . . . 9  |-  ( ( A  e.  V  /\  3  <_  ( # `  A
) )  ->  E. x  e.  ran  (pmTrsp `  A
) E. y  e. 
ran  (pmTrsp `  A )
( x  o.  y
)  =/=  ( y  o.  x ) )
3025, 29syldan 487 . . . . . . . 8  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  E. x  e.  ran  (pmTrsp `  A
) E. y  e. 
ran  (pmTrsp `  A )
( x  o.  y
)  =/=  ( y  o.  x ) )
31 ssrexv 3667 . . . . . . . . 9  |-  ( ran  (pmTrsp `  A )  C_  ( Base `  G
)  ->  ( E. y  e.  ran  (pmTrsp `  A ) ( x  o.  y )  =/=  ( y  o.  x
)  ->  E. y  e.  ( Base `  G
) ( x  o.  y )  =/=  (
y  o.  x ) ) )
3231reximdv 3016 . . . . . . . 8  |-  ( ran  (pmTrsp `  A )  C_  ( Base `  G
)  ->  ( E. x  e.  ran  (pmTrsp `  A ) E. y  e.  ran  (pmTrsp `  A
) ( x  o.  y )  =/=  (
y  o.  x )  ->  E. x  e.  ran  (pmTrsp `  A ) E. y  e.  ( Base `  G ) ( x  o.  y )  =/=  ( y  o.  x
) ) )
334, 30, 32mpsyl 68 . . . . . . 7  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  E. x  e.  ran  (pmTrsp `  A
) E. y  e.  ( Base `  G
) ( x  o.  y )  =/=  (
y  o.  x ) )
34 ssrexv 3667 . . . . . . 7  |-  ( ran  (pmTrsp `  A )  C_  ( Base `  G
)  ->  ( E. x  e.  ran  (pmTrsp `  A ) E. y  e.  ( Base `  G
) ( x  o.  y )  =/=  (
y  o.  x )  ->  E. x  e.  (
Base `  G ) E. y  e.  ( Base `  G ) ( x  o.  y )  =/=  ( y  o.  x ) ) )
354, 33, 34mpsyl 68 . . . . . 6  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  E. x  e.  ( Base `  G
) E. y  e.  ( Base `  G
) ( x  o.  y )  =/=  (
y  o.  x ) )
36 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
372, 3, 36symgov 17810 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( x  o.  y
) )
3837adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  2  <  ( # `  A ) )  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( x ( +g  `  G ) y )  =  ( x  o.  y ) )
39 pm3.22 465 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  /\  x  e.  ( Base `  G
) ) )
4039adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  2  <  ( # `  A ) )  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( y  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
) )
412, 3, 36symgov 17810 . . . . . . . . 9  |-  ( ( y  e.  ( Base `  G )  /\  x  e.  ( Base `  G
) )  ->  (
y ( +g  `  G
) x )  =  ( y  o.  x
) )
4240, 41syl 17 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  2  <  ( # `  A ) )  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( y ( +g  `  G ) x )  =  ( y  o.  x ) )
4338, 42neeq12d 2855 . . . . . . 7  |-  ( ( ( A  e.  V  /\  2  <  ( # `  A ) )  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x )  <-> 
( x  o.  y
)  =/=  ( y  o.  x ) ) )
44432rexbidva 3056 . . . . . 6  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  ( E. x  e.  ( Base `  G ) E. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x )  <->  E. x  e.  ( Base `  G ) E. y  e.  ( Base `  G ) ( x  o.  y )  =/=  ( y  o.  x
) ) )
4535, 44mpbird 247 . . . . 5  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  E. x  e.  ( Base `  G
) E. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =/=  (
y ( +g  `  G
) x ) )
46 rexnal 2995 . . . . . 6  |-  ( E. x  e.  ( Base `  G )  -.  A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x )  <->  -.  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
47 rexnal 2995 . . . . . . . 8  |-  ( E. y  e.  ( Base `  G )  -.  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x )  <->  -.  A. y  e.  (
Base `  G )
( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) )
48 df-ne 2795 . . . . . . . . . 10  |-  ( ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x )  <->  -.  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) )
4948bicomi 214 . . . . . . . . 9  |-  ( -.  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x )  <->  ( x
( +g  `  G ) y )  =/=  (
y ( +g  `  G
) x ) )
5049rexbii 3041 . . . . . . . 8  |-  ( E. y  e.  ( Base `  G )  -.  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x )  <->  E. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x ) )
5147, 50bitr3i 266 . . . . . . 7  |-  ( -. 
A. y  e.  (
Base `  G )
( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x )  <->  E. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =/=  (
y ( +g  `  G
) x ) )
5251rexbii 3041 . . . . . 6  |-  ( E. x  e.  ( Base `  G )  -.  A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x )  <->  E. x  e.  ( Base `  G ) E. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x ) )
5346, 52bitr3i 266 . . . . 5  |-  ( -. 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x )  <->  E. x  e.  ( Base `  G ) E. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =/=  ( y ( +g  `  G ) x ) )
5445, 53sylibr 224 . . . 4  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  -.  A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
5554intnand 962 . . 3  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  -.  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
5655intnand 962 . 2  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  -.  ( G  e.  Grp  /\  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) ) )
57 df-nel 2898 . . 3  |-  ( G  e/  Abel  <->  -.  G  e.  Abel )
58 isabl 18197 . . . 4  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
593, 36iscmn 18200 . . . . 5  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
6059anbi2i 730 . . . 4  |-  ( ( G  e.  Grp  /\  G  e. CMnd )  <->  ( G  e.  Grp  /\  ( G  e.  Mnd  /\  A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) ) )
6158, 60bitri 264 . . 3  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  ( G  e.  Mnd  /\  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) ) )
6257, 61xchbinx 324 . 2  |-  ( G  e/  Abel  <->  -.  ( G  e.  Grp  /\  ( G  e.  Mnd  /\  A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) ) )
6356, 62sylibr 224 1  |-  ( ( A  e.  V  /\  2  <  ( # `  A
) )  ->  G  e/  Abel )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ran crn 5115    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   2c2 11070   3c3 11071   NN0cn0 11292   #chash 13117   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294   Grpcgrp 17422   SymGrpcsymg 17797  pmTrspcpmtr 17861  CMndccmn 18193   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798  df-pmtr 17862  df-cmn 18195  df-abl 18196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator